The CoGenT Project:
Co-Generating Compilers and Simulators For Dynamically Canpiled Languages

J. Eliot B. Moss, Charles C. Weems, and Timothy Richards
Department of Computer Science, University of Massachsigehherst

Abstract able time. The solution is to produce compiler and simula-
tor components automatically from machine descriptions.
To understand the performance of modern Java systems
one must observe execution in the context of specific archi—2 The Need
tectures. It is also important that we make these observa-
tions using a compiler that is capable of producing opti-
mizations that are specialized to the target machine. Cur-
rent architectural simulators, however, provide little 0o
support for dynamically compiled languages and their en-
vironments.
Experimenting with innovative architectural ideas re-
quires modifications not only to the simulator, but to the

One way to grasp the need is to consider the prototype
system illustrated in Figure 1 (some pages later in this pro-
posal). It showsencomponents that will be generated from
descriptions. These componemsistbe built in order to
target the compiler and simulator to a specific architecture
and implementation, and obtain the desired measurements

compiler backend as well. Currently, it is difficult if notim e are notthe only ones arguing for this kind of automa-
possible to accomplish exploration of this sort. tion. Schnarr built the Facile simulator generator [21, 19]

This paper proposes a system for the coordinated effortb€cause his simulators were t0o complex to build reliably
of generating simulators and matching compiler backends Py hand. Ramsey and Fernandez [16, 18] and Ramsey and

automatically from machine descriptions. Machine descrip Davidson [17] emphasize the need for machine instruction
tions are processed by tools to produce efficient compiler SPEcifications and tools and generators that work from them.
and simulator components and these components “plug in” Ba|[ey and Dav!dson desqube t_he amplgumes and errors of
to an existing framework. This system provides an ex-Calling conventions described in English [3, 2]. The ML-
ploratory environment for compiler writers, computer ar- RISC project [8] also places automatic generation of com-
chitects, and students, while maintaining the performance Pil€r components as a priority.

and flexibility required for evaluating real systems. We believe that enough pieces of the overall problem
have been addressed that it is reasonable, though still chal

lenging, to produce coordinated compiler and simulator
components automatically. We next review prior work, and

1 Introduction proceed to lay out our vision in more detail.

This project is motivated by a substantial obstacle we .
have encountered in trying to explore, in detail, the perfor 3 Prior Work
mance of Java virtual machines on modern hardware, and
to evaluate architectural features that might improveqerf Many parts of this overall problem have been addressed
mance. The problem is four-fold. First, to consider perfor- previously, but the overall combination has not:
mance questions accurately and in detail requires a cycle-
accurate simulator, and it must be capable of supportingthe e Most cycle accurate simulators demand statically

dynamic environment of a modern Java system. Second, re- linked executables, and so cannot handle Java, which
alistic performance predictions require compiler optiasiz generates code dynamically. They also tend not to
tions, such as instruction scheduling, tuned to the archite handle hardware traps, some of which are reflected to
ture. Third, we must be able to generate new compiler op- the application as Java exceptions. We extended Sim-
timizers (back-ends) with matching simulators. Fourtle, th pleScalar [5] to produce Dynamic SimpleScalar [9],

generation process, and the generated simulators, aldo nee which took more than a year to build and is not eas-
to be relatively efficient, so as to produce results in reason ily retargeted.

e Full system simulators, which simulate the operating trees (e.g., register transfer language (RTL)). One wdtes
system and hardware devices, get around those prob¢ollection of target-dependent patterns. Each such patter
lems, but most of these are functional simulators only matches a bit of tree, reduces it to a smaller tree (usually
and do not provide timing information. a single node), and generates some target code in the pro-

cess. The patterns include a cost. Tools have been avail-

able for some time that generate a pattern-matching tree-
reduction (target) code generator given the patterns (ysua
calledrules). Here are some examples of rules, writing the

_ . . trees as LISP-like expressions:
e There is considerable previous work on retargetable

e Most easily retargeted simulators are not cycle-
accurate, but model only functional semantics. Some
offer cache hit-miss or branch prediction statistics
models.

code generators, but most of them reqUire one to Tree to match Reducedtri&ostCode generated
present code generator patterns or rules, such as those | ... = e L |1 reg—constis
of Twig [1] or burg [7]. We want to generate the code oot 32 = e 2 lui regeni (oomst32)
generator (i.e., instruction selector) directly from an ori reget o(const 32)
ISA desgr|pt|on. This is spmewhat similar to Cattell's comtonts mom = reg 2 lwrogemom
dissertation work [4], which has apparently npt been (dd re0, roge) = ress © | reay —rogy. re0s
followed up. However, we also want to derive the .
. (add reg; const16) = rego 1 |addi rego+«—regq,constl16

costs in the rules automatically from machine timing)

(assign nem reg) = regq 2 [swregq—mem

descriptions.

e Not on|y do we need components to be read”y retar- These rules are for the MIPS R2000, in which one can

geted, they need to be, as much as possible, generatet®ad or add an immediate 16-bit constant, but getting a 32-
automatically from common descriptions. One reason bit constantinto a registers requires two instructionséalt

is that we need to make sure that the compiler and sim-upper-immediate and an or-immediate). (One could also
ulator match each other. Another reason is that au-|Oad from a global area, but it is not faster, and will be
tomation will lead to fewer mistakes and also to more slower if there is a cache miss, etc.) For the input tree

rapid construction of compiler-simulator pairs. (assign ml (add (contents n2) cl)), froma
BURS-style code generator using the rules above we would

e The generated simulators need to be reasonably eﬁ"obtain this minimal cost code:

cient. Previous techniques to speed simulation include

predecoding and caching (common techniques), state- | W r1len?P
transition caching [19, 20], using threaded code [12], addi r2«<r1,cl
and, for essentially fixed targets, generating machine swr2—ntl

code at run time [15]. We intend to apply adaptive
compilation, analogous to adaptive Java optimizing Such code generators target a machine with an infinite

compilers, to speed simulation on-the-fly. set of registers to hold temporary results; one applies reg-
ister allocation later, adding any necessary spill stores a
4 Our Vision loads.

Retargeting such code generators is easy in the sense that
one need only write a rule set for each processor. However,
in our case we want to generdke rulesfrom a description
of the semantics of the ISA. This is more or less the problem

We now lay out our vision, treating in turn the genera-
tion of compiler components, the generation of simulator

components, and efficient simulation. that Cattell studied [4], and is also similar to the MLRISC
)) back-end strategy [8]. (There are other such systems, but
4.1 Generating Compiler Components these are representative.) Fortunately, ISA semantics are

written in a form in which it is not too difficult to extract

We consider three target-specific tasks in generating op-many of the rules. In particular, we can generate a rule for
timized code: instruction selection (code generatiomisre every addressing mode and instruction form. This is not
ter allocation, and instruction scheduling. quite enough, though, as thei / or i rule above suggests:

Instruction selection: Of the three tasks, instruction se- to cover some intermediate language constructs may require
lection is conceptually the most difficult. Up to a certain multiple instructions. Discovering such sequences reguir
pointin a compiler, the processing and optimization is more a certain amount of search, which is exemplified by Cattell's
or less independent of the target architecture, but at someapproach and also Isuper-optimizatiofil 3]. In this search
point we must generate target instructions. Most techrsique one also applies algebraic rules, so that one can produce
work from some kind of machine-independent expression patterns such as these:

Treeto match Reduced tref€ost/Code generated ing). List scheduling is fast and generally produces pretty

(add const16 reg) = regy | 1 faddi regy—regy, const1s good schedules. A commonly used heuristic is catied
(sub const16 regj) = regs 2 [subi regp<«regq,constl16 ical path SChedUIing. Critical path SCheduIing I’equil’eS a
sub regy 10, regy // negate regy simple, cycle-level, machine model. We propose to gener-

. | d K h ate that component automatically from the ISA and timing
In generating rules, we need to make sure that every Se'desc:riptions. In essence, it is a stripped down simulation

mantic tree can b:jaovferec(reduced),h:/vhmh |r.np:|es'that wed. component. We note that it would not be difficult (in prin-
can generate code for any tree. (If a particular intermedi- i 10 ot east) to generate resource vector information for
ate representation (IR) cannot generate every possilde tre other schedulers if that were desirable

then we can relax this restriction to one that we cover every Compiler Framework: It should be .clear that we will

possible l.R _tree_.) Once v;/]e have qone(jthat, we can applynot be generating complete compilers from ISA and timing
super-optimization to each pattern's code sequence, to tryspec:ifications. Rather, we will generate specific, focused,

tp improve it. ThI'S requires a cost model, which we will de- components that “plug in” to a substantially larger compile
rive from instruction timings (see below). Note that wherea designed to interface with them, in this case the existing
BURS-style code generator generation is rather like parsery s RVM compilers

generation in that it is concerned only with syntactic forms
we will be working in the realm of semantics, within the
theories of integer and floating point arithmetic. Catiatik
care, and so will we, not to slide down the slope into gen-]] o)
eral theorem proving. Still, the search for an instruction e view a simulator as consisting of many kinds of
sequence with given semantics is at heart an attempt to in.components. Of these, the ones we propose to gener-
stantiate a theorem that there exists such a sequence. IR automatically from ISA and timing descriptions are in-

practice, the search must apply heuristics and occasjonall Struction semantics and instruction timing, which we de-
use judicious “advice” (in the form of theorems or transfor- scribe in more detail in Section 4.3. We will also generate

mation rules added by a human). Fortunately the need forth® machine-dependent parts of debugger support. We as-
such advice appears rare. sume that the remaining semantics and timing components

Register allocation: This is probably the easiest of the presgnt swtqble interfaces to call and be called by thergene
three components to deal with, because ultimately it relies@t€d instruction-related components. We do plan to offer a
primarily on tabular information about which registers are Modestrange of optionsin a library of semantics and timing
available on the target architecture, and any restricions ~ COMPonents, such as branch predictors, caches, and mem-
conventions as to their uses. That is, we assume an esserf2"Y 0rganizations.

tially table-driven register allocator, and what we have to _Instrumentation is an area where we belieagpect-
generate is the table. If the compiler framework is not table Oriénted programmingg] can be used to good effect. In this

driven, then it will require more effort to adapt the frame- @PProach one specifies in a separate file the places where
work to automated use. This is probably an area where we®N€ desires to attach |n.strumentat|on, and what |n§trumen-
could end up applying inordinate effort if we try to handle t@tion code should be invoked at each place. This sepa-
every possibility, so in practice our aims will likely be neor ratg f|.Ie is amspgq in this case_for instrumentation. The
modest. Still, the Jikes RVM handles register allocatian fo POintis that even if instrumentation attaches at many jslace
the Pentium (few registers) and the PowerPC (32 genera|throu.ghout the simulator code, the mstrumentanon remain
purpose and 32 floating point registers), so the necessangPecified separately. The aspect-oriented tool, e.g.,ck3pe
algorithms are there for a useful range of possibilities. We [10; 11], weaves together the aspect and the rest of the code.
note that MLRISC also includes a register allocation strat-
egy, which we might exploit. 4.3 Building Efficient Simulators

Instruction scheduling: This is clearly dependent not
only on the target ISA, but also on the target implementa- There are three areas of simulator efficiency we wish to
tion (timing). There are two popular approaches to instruc- discuss here, being most relevant: functional simulation o
tion scheduling. One is to use resource vectors for each in-instructions, instruction timing simulation, and efficagrof
struction. These indicate which resources (functionak,ini the additional simulation components.
etc.) each instruction needs for each cycle of its execution ~ Functional simulation: The obvious and often used
One tries to order the instructions so as to minimizes gaps inmethod of functional simulation somewhat literally models
the schedules while obeying the resource constraints. Wayshe hardware and its actions—except the hardware can be a
this to do this include heuristics and integer programming. simple conceptual model as opposed to real hardware with

The other strategy is to use more local heuristics andits internal parallelism and design for speed. One models
build a schedule up one instruction at a time (list schedul- the registers and memory as data structures in the program-

4.2 Generating Simulator Components

ming language of the simulator, and writes a fetch, decode,matches target semantic trees against the IR and produces
execute loop. This loop uses the current program countertarget instructions. In this case, we build IR for trees we
to index memory and fetch the bytes of the next instruction want to simulate, and then generdtest code for those
to execute. Then it does a case analysis on the bits of thdrees.
instruction to determine what instruction was fetched, and For an instruction interpreter, we generate code, proba-
uses some form of case statement (or similar dispatch strucply in a higher-level language such as Java or C, but possibly
ture) to branch to simulator code implementing that instruc directly as host instructions, for a logical machine whose
tion’s effects. The instruction’s simulation code will iee registers and memory are in simulator data structures. We
to fetch operands from the modeled registers and memorycompile this code as we build the simulator. Generating
perform computation on them, store results back to register higher-level language code makes it easier to re-host the
and memory, and update the program counter. simulator (run it on a different platform, but simulatingeth
We offered this detailed description of a simulation in- same target architecture).
struction interpretation loop to give a sense of why such Eor run-time code generation, we produce a code gen-
simulation might be slow. Here are some ways one cangrator for thehostinstruction set. The input to this code
speed up functional simulation: generator will be semantic trees representing the sensantic
of particular sequences of target instructions. We observe
that here, as in the case of generating target code directly
from Java bytecodes in the Jikes RVM “baseline” compiler,

e Pre-decodéhe instructions.
e Usethreaded codén the decoded instructions of the

interpreter, reducing the per-instruction overhead.

Take into accountore than the opcodef the instruc-
tions.

Generate codat run timethat simulates the effect of a

we would like to be able to generate code without actually
constructing the semantic trees, so as to minimize the over-
head of generating code at run time.

Timing Simulation: We will focus on timing simula-

tion, built in the style of Schnarr [19]. In this style, thersi
ulator maintains, in program execution order, a queue of the
instructions currently in the modeled processor’s pigin
and their states. At each clock tick, the simulator scans the
gueue, from oldest to newest instruction, and tries to ad-
vance the state of each instruction. Some oldest instruc-
tions may retire and disappear from the queue, and some
new instructions may enter the instruction fetch stage and
be added to the queue. The time taken by the simulator
With the possible exception of adaptive run-time compi- is thus roughly proportional to the number of instructions
lation, all of these techniques have been implemented be-executed times the average instruction’s “lifetime” in the
fore. However, to our knowledge no one has employed queue. Thus, performance is affected more by the depth of
run-time code generation in simulators derived from ISA the pipelines than by instruction level parallelism (ILP).
descriptions. We will explore adaptive run-time code gen- The state of an instruction indicates where it is in the
eration of functional semantics from ISA descriptions. éler pipelines (at which functional unit, and where in that uit’
are some of the questions we will address: processing of it). Because we advance instructions working
from oldest to newest, we can do functional unit busy-ness

e What are the challenges in producing good code pookkeeping very easily during the scan at each tick, reduc-
quickly from ISA descriptions? Are some styles of ing bookkeeping code and work.

ISA description better suited to this task than others?

particular instruction.

e Generate code fragments foore than onénstruction
at once.

e Optimize the code fragmerfte more than one instruc-
tion.

e Shift adaptively from slower to faster techniquas
cording to the execution frequency of instructions.

To represent any instruction’s need to wait for operands,

o What are the relative speeds of interpretive, threaded-we associate with the instruction one or more input and out-
code, and native code forms with different levels of put events, represented as boolean flags indicating whether
optimization? What are the relative code generation the events have occurred. When an instruction reaches a

costs? What are the space-time trade-offs? stage of execution (state) where it needs its inputs, thekclo

 What are good adaptive optimization triggers and trig- tick scan will check the input events, and will not advance
ger levels? the instruction’s state if the necessary events have not yet

occurred. Likewise, when an instruction enters the instruc

Generating functional simulation components: We tion queue, we clear its output events, and only when the

can generate functional simulation components from ISA instruction reaches the state in which the outputs are-avail
semantic descriptions by building what amounts to variant able do we set the events. We need not allocate and free
code generators. A normal code generator for the targetthese event structures, since we can associate them with the

instruction’s slot in the queue (i.e., keep the event flagmin In Milner's scheme one further marks the pipeline el-
array parallel to the instruction queue, which itself isasi ements with theisemanticsi.e., what operation(s) they

ple circular buffer). We also maintain a table that indisate perform. (The inputs and outputs are determined by the
for each register, the latest output event that will write (o pipeline graph structure.) We would express the semantics
has written) that register. This is all actually quite e, using the same semantic notation as we use for writing in-

as the following step-by-step description suggests: struction semantics in ISA descriptions. Given the serganti
annotations, we can then match each ISA instruction to the

1. When entering an instruction into slobf the instruc- possible pipeline flows for that instruction. (We might have
tion queue, clear the output events associated with slotto rule out some possibilities as ones the control logic does

k. not actually use.)
2. For each input registet associate with the instruction e advantage of this approach is, as Milner notes, that
thecurrent evenof r. it decouples the descriptions of ISAs from the descriptions

.] of architecture implementations, obviating the need tédbui
3. For each output registey record the appropriate out- 5 gescription for each (ISA, implementation) pair that one
put event of the current instruction as the current event,,ants to work with. Coupling comes only through the use
of . (This must happeafter the previous step if the o 3 common semantic notation—the same notation that is
same register is an inpandan output!) in common between compiler IRs and the ISA description.
4. When the instruction must wait for its operands, the When we generate a simulator we can check that each ISA
state advancing code inhibits advance until the instruc- instruction has a suitable pipeline implementation, etc.
tion’s input event’s are set to true. Speeding Timing Simulation Using State Transition
Caches:Recent work by Schnarr [19, 21, 20] demonstrated
that, with a suitable encoding of machine states, one can
cache (memoize) machine state transitions and substgntial
speed up timing simulation.

To this we add some logic to handle the case when a reg-)) . .
ister has not been updated in a long time (and the “current Schnarr's FastSim [20] and Facile [19, 21] systems build

event” flag may be reused, which would confuse uses ofUP a cache of state to state transitions. He found that, given

the register), and for instructions executed speculativet girr]r?:jlgl?i OTlen\}\c/)eryé;f:Sbﬁﬁg hsi;gzlf:;;inhtilz szestdesmui?]:émolzg
discarded—details we omit here. ' 93y

o o S . L ign.
Our point is that this kind of timing simulation is fairly desig . .
. : . Schnarr’s Facile system analyzes the target executable
general, and depending on the fetch logic and the inter-. : ; :
. . L in advance, and generates simulation code for every basic
action with other system components, can drive timing of

) . block. It also caches state transition information for ev-
a wide range of architectures. For example, we are con- ; . .
.) . ery basic block executed (though it can discard and recon-
vinced that not only can it be used for in-order and out-

- - . . struct that information if the state transition cache grows
of-order pipelined superscalar RISC machines, including 9

o R) - 2too large). We intend to produce run-time code only for
ones with “delay slots” and multiple levels of speculation frequently executed blocks. and to aoply adaptive optimiza
through branches, it can also handle very long instruction q y ' bply P P

word (VLIW) architectures, the predication and speculatio E(I)oncliz O\;b\/tslvr\l/iltl)ﬁg\% ;?gﬁrfgirsthgsggsé fgetg#]etr;tg s;(r?(;uteld
of the Intel IA-64, etc. It is also suited to modeling the tim- ' P y PPl

ing in multithreaded CPUs (the challenge there is the fetch 2 fande of soph|s_t|cated optimizations, if Fhe cost s war-
logic). ranted. We also intend to separate functional and timing

Building timi imulat N ticallvThis | simulation, which we believe will lead to better speedup,
th ul m? |£n|ng st{muHa orsdau oma 'Ea.lyd' IS heave_s and in any case make it easier to recover when we mispre-

€ important questiontiow does one bulld SUch & SiM- ;. axacytion paths. (Schnarr’s system must make special
ulator automatically? The answer is that we describe the

pipelines and the flows of the instr'uctions through them. Eor E;??::S;Z?;&g%g trheate \)/(vzzuélcr)]r?etzittg?rr\iaog ;Fnr;(grt:g? r?1|i§2?e-
Fh|s, qthers ha\{e proposed a variety of strategles,' .d'@e” diction was detected, which considerably complicates the
|n.the|r convenience, comp_actness, gnd checkaplllty. OneOlesign and slows the system down.)

fairly recent approach that is helpful in our case is dime

notated pipeline graphef Christopher Milner [14], which) . .

he proposed for use in instruction schedulers. In his scheme> A Prototype to Begin Realizing the Vision

one describes the pipelines and their connections, much as

in architecture implementation descriptions from manufac ~ Having laid out our vision and some of the general re-
turers. (The “annotations” express any additional schedul search problems involved, we now describe more concretely
ing constraints of the implementation.) the prototype we aim to build, illustrated in Figure 1. The

5. When the instruction produces an output, it sets the
corresponding output events to true.

‘ Machine Descriptions
functional Java bytecode base]jijlae
i simulator . comprer "
Simulator semantics ‘ Jikes
Framework ‘ RVM
timing LIR semantics [P objectlayout (cornpiler)
simulator Framework
I
[
. Machine description BURS
debugging — TISA semanticsand |— > rules
support syntax I
register
- allocation
g Tocset Plpelme g;aph information
semantic annotations
L . | Instruction
Instrumentation scheduler info
Aspect] Instrumentation simple instruction
aspect timing simulator

Figure 1. Architecture of the Proposed Prototype System

figure shows the simulator and compiler frameworks at the
sides, emphasizing that generated components “plug in” to
the frameworks. The center column shows the ISA, IR, and
pipeline descriptions (and the instrumentation aspedie T
lines and arrows show which descriptions are used to build
which generated components. To avoid visual clutter, the
figure does not show the individual generator programs and
tools (except for AspectJ).

We intend to do most of the work in the context of the
Jikes RVM Java virtual machine. We have considerable ex-
perience using and modifying the Jikes RVM, which was
originally called Jalapefio and was developed by a team at
IBM Research. It is now available as an open source sys-
tem, with many academic research groups using it for work
in compilation.

Jikes RVM is good for automatically retargeting both
compiler back-endandsimulators. There are, as with any
system, some system-specific and practical issues we face
in using the Jikes RVM for this work. They include:

e While the optimizing compiler is designed to be retar-
geted using BURS rules, which we intend to generate
from ISA semantic descriptions, the baseline compiler

simulation as C and other unsafe languages. The Jikes
RVM canselectivelysuppress checks that we know are
unnecessary. We believe that this, combined with the
quality of the Jikes RVM optimizers, will enable us to
produce a system with competitive performance ... and
with substantial software engineering benefits over C
systems. In brief, we will be able to build, adébug

a system faster. We already have this experience in
using Java to write a whole series of garbage collectors
for the Jikes RVM.

We will need to develop a simulation framework some-
what from scratch. We can base it on existing sys-
tems, such as SimpleScalar, but the automatic retar-
geting that is the essence of our approach means that
many pieces will be new. But we can certainly ex-
ploit previous tools and languages fygneratinghese
components, retargeting them to produce Java code to
interface with our frameworks.

5.1 Prototype Description Languages

We previously mentioned the MLRISC system as of-

is not designed in a retargetable way. We need to fig- féring an apparently appropriate machine description lan-
ure out how to generate an efficient baseline compiler guage. It allows one to describe the “syntax” of instrucsion
from semantic descriptions of the Java bytecodes (the(bit fields, opcode values, etc.), and to relate the bit sytuta

“IR” in this case) and the target ISA.

assembly code syntax (to build assemblers, disassemblers,

and target-specific debugger modules). More significantly,

ister allocation automatically retargeted. This may in-

For the optimizing compiler we will need to make reg- one can associate semantics with the syntax, in the form of
trees. MLRISC further provides for register allocation in-

volve developing automatically generated calling con- ¢, 44i0n - MLRISC collaborators have already generated

vention descriptions—which can be used in both the
baseline and optimizing compilers.

machine descriptions for a range of modern CPUs, includ-
ing the Alpha (32 and 64 bit), HPPA, IA-32, PowerPC (32

e Java is not viewed as being as efficient a vehicle for and 64 bit), and SPARC.

The MLRISC project aims to produce quality back-ends erate here. However, we do have a few additional observa-
automatically from machine descriptions. They do so by tions:

specializing a “generic” optimizing back-end to the target
instruction set. They assume a front-end that produces ML-
RISC trees. Their code generator (instruction selection)
strategy is simpler than a BURS rule system (but they say
it is more efficient). Given our compiler and simulation
framework, we cannot use MLRISC components directly,
but one strategy would be to modify theirdgenprogram,
which generates MLRISC target-specific compiler compo-
nents from a machine description, to generate components
for our system.

One admitted weakness of MLRISC is in the area of call-
ing conventions and register usage, where it may help to in-
troduce additional descriptions along the lines of Baileg a
Davidson, as previously mentioned.

5.2 Prototype Compiler Framework

The parts of the Jikes RVM that need retargeting, in-
clude the object and class layout portion of the class Igader
the generation of BURS rules, the instruction scheduler, th
register allocator, the assembler (constructs machine cod
words/bytes from MIR form), the disassembler (used for
producing listings and debugging output), and the baseline
compiler and its assembler. Most of these pieces of a com-
piler have been automatically retargeted before, so we buil
on the others work quite directly. Generating BURS rules
is a little different and perhaps the most challenging fzest,
previously discussed, but we can start with Cattell's work 6
[4]. We also need timing estimates for rule costs, which we

e Dynamically generating simulation code is very sim-

ilar to performing dynamic binary translation, so a
fairly easily achieved additional result of our work

would be an automatically retargeted dynamic binary
translation system.

We may need to develop some interesting extensions
to the Jikes RVM and its compilers in order to real-
ize all the simulation speedup ideas we envision. For
example, at present, every piece of dynamically gen-
erated code is a Java method. How will we generate
thousands of code snippets, which may not ever ex-
ist in Java bytecode form, and integrate them into the
Jikes RVM system (including garbage collection, ex-
ception handing, thread switching, etc.)? Likewise,
we may want to add an efficient co-routining mecha-
nism, or use threaded code, both of which require sys-
tem support, and possibly compiler extensions. The
Jikes RVM will be a good vehicle for such explo-
ration, though, given its completeness, relatively mod-
ular structure, and the community of capable people
working with it.

¢ In addition to MLRISC for ISA syntax and semantics,

we will develop and implement a language for express-
ing pipelines and their semantics, based on Milner's
proposal [14] as previously discussed.

Conclusion

can obtain from a stripped down timing simulator. We have described the need for cycle-level timing simu-
Challenging but manageabl&Ve feel that the projectis, lators to evaluate new architectural features and idedein t
on the one hand, a significant enough advance in the stateontext of modern programming languages, and the need
of the art to be worthwhile, and on the other hand, enoughfor corresponding optimizing compiler back-ends. Further
of it consists of synthesis and extension of previous work these should be generated automatically from precise and
to make it manageable. Of particular note is the hundredsconcise descriptions, both to speed architectural exiiora
of thousands of lines of code in the Jikes RVM that we are and to prevent errors and bugs. Enough prior work has been
exploiting in not building a JVM and JIT compiler(s) from done on the component problems that the proposed work,
scratch. The practical side of the work consists mostly in while challenging, can be accomplished. We expect the re-
making a fairly retargetable system more thoroughly retar- sulting system to be widely portable and readily used by
getable. We also note that in making the Jikes RVM auto- others in research, and it will also have many uses in teach-
matically retargetable, our whole platform becomes widely ing about modern compilers, architectures, and simulators
portable as a “side-effect” of our work, substantially in-

creasing its utility to others. References

[1] A. V. Aho, M. Ganapathi, and S. W. K. Tjiang. Code
generation using tree matching and dynamic programming.
ACM Transactions on Programming Languages and Sys-
tems 11(4):491-516, Oct. 1989.

[2] M. W. Bailey and J. W. Davidson. Construction of systems
software using specifications of procedure calling conven-
tions. Submitted for publication.

5.3 Prototype Simulator Framework

As we mentioned above, while the compiler framework
mostly exists, the simulator framework will be mostly new,
but we will gain significant benefits by building it in Java
and in the Jikes RVM in particular, which we will not reit-

(3]

(4]

(5]

(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

M. W. Bailey and J. W. Davidson. A formal model and
specification language for procedure calling conventidms.
Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languaggsages 298-310, San
Francisco, CA, 1995. ACM.

R. G. G. Cattell. Automatic derivation of code generator
from machine descriptionA\CM Transactions on Program-
ming Languages and Syster2§2):173—-190, Apr. 1980.

D. C.Burger and T. M. Austin. The SimpleScalar tool set,
version 2.0. Computer Architecture New5(3):13-25,
June 1997. Extended version available as Univ. of Wisc.
Comp. Sci. Tech. Rep. 1342, June, 1997.

T. Elrad, R. E. Filman, and A. Bader. Aspect oriented pro-
gramming. Commmunications of the AGM4(10):29-38,
Oct. 2001.

C. W. Fraser, D. R. Hanson, and T. A. Proebsting. Engi-
neering a simple, efficient code generator generafdtM
Letters on Programming Languages and Systdri(®):213—
226, Sept. 1992.

L. George and A. Leung. MLRISC: A framework for retar-
getable and optimizing compiler backends. Technical tepor
Bell Laboratories and New York University, 2000.

X. Huang, J. E. B. Moss, K. S. McKinley, S. Blackburn, and
D. Burger. Dynamic SimpleScalar: Simulating Java virtual
machines. In preparation., 2002.

G. Kiczales et al. An overview of AspectJ. Rroceedings

of the Fifteenth European Conference on Object-Oriented
Programming (ECOOR)Springer-Verlag, 2001.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.rRal
and W. G. Griswold. Getting started with Aspectbmmu-
nications of the ACM44(10):59-65, Oct. 2001.

F. Larsson. Generating efficient simulators from a gpec
fication language. Master's thesis, Computing Science De-
partment, Uppsala University, Uppsala, Sweden, 1997. Pub-
lished as thesis number 1997-01-29.

H. Massalin. Superoptimizer—a look at the smallestpro
gram. InProceedings of the Second International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS Ralo Alto, CA, 1987.

C. W. Milner. Pipeline descriptions for retargetablenc
pilers: A decoupled approach. Technical Report CS-99-11,
University of Virginia, June 1998.

M. Moudagill, J.-D. Wellman, and J. H. Moreno. Environ-
ment for PowerPC microarchitecture exploratitBEE MI-
CRQ 19(3):15-25, May/June 1999.

S. R. of Machine Instructions. Norman ramsey and mary f.
fernandez.ACM Transactions on Programming Languages
and Systemd 9(3):492-524, May 1997.

N. Ramsey and J. W. Davidson. Machine descriptions to
build tools for embedded systems.ACM SIGPLAN Work-
shop on Languages, Compilers, and Tools for Embedded
Systems (LCTES '98)ages 172-188, June 1998. Available
as Springer Verlag LNCS 1474.

N. Ramsey and M. F. Fernandez. Automatic checking of
instruction specifications. 11997 International Conference
on Software Engineeringages 326-336, May 1997.

E. Schnarr, M. D. Hill, and J. R. Larus. Facile: A langeag
and compiler for high-performance processor simulatars. |
ACM SIGPLAN Conference on Programming Language De-
sign and Implementatio®CM, 2001.

[20] E. Schnarr and J. R. Larus. Fast out-of-order simutatie-

ing memoization. IlProceedings of the Eighth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS VAQM, Oct.
1998.

E. C. Schnarr. Applying Programming Language Imple-
mentation Techniques to Processor SimulatidPh.d. dis-
sertation., Computer Sciences, University of Wisconsin—
Madison, 2000.

