
CMDL: A Class-based Machine Description Language for Co-generation of
Compilers and Simulators∗

J. Eliot B. Moss, Trek Palmer, Timothy Richards, Edward K. Walters II, and Charles C. Weems
Department of Computer Science, University of Massachusetts Amherst

Abstract

It is currently difficult fully to understand the perfor-
mance of a modern dynamic programming language system,
such as Java. One must observe execution in the context of
specific architectures in order to evaluate the effects of op-
timizations. To do this we require simulators and compiler
back-ends for a wide variety of machines that are capable of
handling the demands of today’s dynamically compiled lan-
guages and their environments. We introduce here CMDL,
a machine description language specifically designed for
the automatic generation of simulators and compiler back-
ends. CMDL is a class-based language with a C/Java style
syntax aimed at extensibility. CMDL is processed by tools to
generate descriptions of architectures represented in an in-
termediate form; the descriptions are then further combined
and processed to produce efficient compiler and simulator
components designed to “plug in” to existing frameworks.
CMDL provides the necessary flexibility to advance the sim-
ulation paradigm to match the state of the art in computer
systems.

1 Introduction

Compiler and architecture performance analysis requires a
highly accurate simulation infrastructure to obtain useful
results. It is important that we make observations using a
compiler that is capable of producing optimizations special-
ized to the simulated target. Both simulator construction
and compiler back-end construction are time-consuming
and error-prone. These issues seriously hamper efforts at
architectural exploration and compiler optimization work.
Also, it is difficult to obtain simulators with the right level
of detail necessary for experiments involving modern dy-
namic languages, such as Java.

∗This material is based upon work supported by the National Sci-
ence Foundation under grants ACI-0203895, CCR-0085792, and CCR-
0310988. Any opinions, findings, conclusions, or recommendations ex-
pressed in this material are those of the authors and do not necessarily
reflect the views of the NSF.

An integrated simulator/compiler environment, driven
by higher-level specifications, is needed to advance the sim-
ulation paradigm to match the state of the art in computer
systems. We propose a system, called CoGenT, that will au-
tomatically generate matching compiler back-ends and ef-
ficient functional and cycle-based simulators. Functional
simulation and code emitters will be generated directly from
provided machine descriptions. Timed simulators and in-
struction schedulers will also be generated from the de-
scriptions augmented by timing models [7, 12]. The glue
necessary to turn a code-emitter into a compiler’s code-
generator will be derived automatically from descriptions
using bounded heuristic search [1].

The CoGenT system is a collection of tools and libraries
for manipulating and transforming machine descriptions,
and as such the first major step in constructing CoGenT is
the creation of a common language for those descriptions.
CMDL, the CoGenT Machine Description Language, is a
class-based language with a C/Java style syntax. CMDL
aims at extensibility and modularity. In CMDL, the class
hierarchy and mixin functions can be leveraged to provide
clear and succinct descriptions of instruction syntax and
semantics. CMDL provides the foundation for an adapt-
able system for generating matching compiler back-ends
and simulators.

This paper provides an overview of CMDL. Section 2
presents some of the prior work upon which the project is
based. Section 3 contains an overview of some of the more
interesting features of CMDL. Section 4 provides an expla-
nation of how CMDL is used within the framework of the
larger CoGenT project. Section 5 explores some of the up-
coming topics that will be addressed by this research, and
Section 6 concludes.

2 Prior Work

Machine description languages have been a topic of re-
search for some time. Two fairly recent languages are
SLED [8] andλ-RTL [10]. These languages were created
separately, and although they have different syntax, they
were combined to form the basis of a confederation of lan-



guages for the generation of compiler back-end tools. The
focus of SLED was to specify the syntax of machine in-
structions whereasλ-RTL was designed to specify instruc-
tion semantics.

These languages had the feature that there were separate
definitions for instruction syntax and semantics. The dis-
advantage of this approach, however, is that it ignores the
inherent coupling of syntax and semantics and makes the
matching of the two the responsibility of an additional tool.
This matching makes the construction of tools that use these
languages complicated and difficult to implement. Further-
more, the multi-language approach complicates the tran-
scription of an architecture manual into a complete machine
description. In addition, the languages over-emphasize a
shorthand-like conciseness which has a major impact on
readability. The readability and usability issues have made
the SLED/λ-RTL confederation difficult to employ in prac-
tice. It is because of these short-comings we felt it necessary
to create CMDL.

There are many other examples of machine description
languages, such as ADL [9], EXPRESSION [5], Facile
[11], and MLRISC [4], but these languages are either too
low-level for our purposes, require the use of specialized
environments, or were designed for use with a specific tool
set. In hardware design, VHDL [6] and Verilog [13] are the
most common hardware description languages, but we do
not require the level of detail that they provide.

An important work in automatic derivation of code gen-
erators is Cattell’s thesis [1]. Cattell built a code generator
generator (CGG) that, given a machine description of a tar-
get, would build a CG for that target, to be incorporated into
a specific compiler using a specific (but reasonably generic)
intermediate representation (IR). Cattell’s CGG works by
performing a bounded heuristic search, for each IR instruc-
tion, of all possible sequences of target instructions that
have the same net semantics, using semantics of the IR and
of the target expressed as algebraic trees. Cattell’s CGG
worked quite well and fairly quickly even by today’s stan-
dards.

As successful as this achievement was, it had several
drawbacks. The IR that Cattell was using was itself not
specified but rather hard-coded into the CGG, whereas we
desire to work from any given IR by starting with a descrip-
tion of that IR, as well as of the target ISA. Also, Cattell’s
descriptions are not modular. Drawbacks aside, the core
of Cattell’s work is valid and effective, and the design of
CMDL has been influenced by the desire to make heavy
use of Cattell’s ideas.

Machine description languages also exist for purposes
other than describing ISA syntax and semantics. To gen-
erate accurate cycle-based simulators automatically, one
needs either a micro-architectural description language [12]
or an abstract method of describing timing [7]. A current

topic of our research is the construction of such a language
compatible and consistent with the CMDL design philoso-
phy.

3 An Overview of CMDL

CMDL is a domain-specific language designed to describe
patterns of bits and computation over those patterns. Each
pattern represents bits in their own abstract space, which
may or may not be disjoint with the spaces of other patterns.
The real machine counterparts of these abstract spaces are
the different stores of the machine, such as registers or
memory. Specifications written in CMDL represent pat-
terns in the form of classes, which contain data members
and semantic methods.

This section provides an overview of some of the inter-
esting and innovative features of CMDL, and as such it is
not a complete description. A more thorough presentation
appears in the CMDL manual.

3.1 Data Primitives

3.1.1 Bits and Bit Arrays

Any possible representation of information by a conven-
tional binary architecture can be reduced to a pattern of bits,
so the basic element of any CMDL description is abit ar-
ray. A bit array is an ordered set of bit values. Individual
bits are accessed by giving the integer representing their in-
dex (0-based) in the array, surrounded by brackets. A bit
array variable of size 32 with the nameinst is declared as:

bit[32] inst;

and bit 31 withininst can be accessed by

inst[31];

CMDL also supports multidimensional bit arrays. The
following declares a bit array representing a register file
containing 32 32-bit registers:

bit[32,32] regs;

and bit 5 of register 4 is accessed by

regs[4,5];

In addition to reading and writing individual bits, bit ar-
rays can be accessed and mutated as a whole. The assign-
ment of one bit array to another is legal as long as the di-
mensions of both arrays are the same, i.e., the number of
dimensions and the size of each dimension matches. For
example, the following assignment is valid subject to these
definitions:

2



bit[30, 29] uneven;
bit[30, 29] uneven2;
bit[29, 30] uneven3;
bit[30, 30] even;

uneven = uneven2;

But the following are invalid:

uneven = even;
even = uneven;
uneven = uneven3;

Note that even thoughunevenanduneven3contain the same
number of bits, their dimensions are not the same and there-
fore one cannot be assigned to the other (without a cast).

3.1.2 Bit Array References

Bit Array Referencesallow one to treat a range of bits within
a previously defined array as a bit array in its own right.
References are most often used to represent a sub-range
within a larger bit array that we wish to manipulate indepen-
dently. Note that bit array references are not copies—they
access the actual bits represented by the reference, so muta-
tion of the reference will mutate the bits of the larger array.
An informal way of thinking of bit array references is that
they provide anoverlayof additional structure on top of a
larger bit array. This has proven to be a useful way to view
references, sooverlay is provided as an optional keyword
(seeType Modifiers, below). For example, if theinst vari-
able declared above represented an instruction for a RISC
architecture, then the first 6 bits of the array might represent
an opcode value (call itop) in the RISC ISA. The following
will define a bit array reference of size 6 beginning at index
15 of inst:

bit[6] op @ inst[15];

3.2 Types

3.2.1 Type Declarations

For CMDL to be powerful enough to describe non-trivial
patterns, it must be possible to construct more complex
types from the simple bit arrays described above. We do
this usingtype declarations. Type declarations allow one to
declare types that may then be referenced in the construc-
tion of more complex types. For example, if within a spe-
cific architecture we want to consider each register within
a register file to be an unsigned 32-bit integer, we use the
following type declaration:

type uint = big unsigned bit[32];
uint[32] regs;

In terms of basic bit arrays, this defines a bit array of 32
rows, each row of which is 32-bits in size, is indexed in a
big-endian manner, and represents an unsigned value.

3.2.2 Type Modifiers

Type modifiers are prepended to an array variable decla-
ration or reference to modify the interpretation of the bits
contained within the array. Modifiers can dictate the direc-
tion of indexing of a bit array (bigendianor littleendian),
whether the abstract value represented by the array has sign
information (signedor unsigned), and whether or not bit ar-
ray references are allowed to be made to a bit array (overlay
or final). Note that type modifiers do not change the actual
pattern of bits within the array, only the meaning of the ar-
ray within a larger context. It is possible to preserve the
abstract value of a bit array but change the bit pattern (e.g.,
changing endianness) using coercions.

Type modifiers may be specified any number of times in
a particular declaration or over nested declarations (seeSub-
ranges, below). Conflicting type specifiers, such aslittle big
bit[32] are also allowed, with the convention that the left-
most modifier in a declaration has precedence. The CMDL
parser will report the conflicts so the description writer is
aware of them.

For multi-dimensional arrays, it is possible to have a dif-
ferent set of type modifiers for each index. This is accom-
plished by declaring the array elements independently, and
combining them using a type declaration.

Endianness Endiannessdetermines the direction of in-
dexing on a bit array. A bit array declared as little-endian
(keywordlittle) assigns an index of 0 to the least signifi-
cant element of the array. A bit array declared as big-endian
(keywordbig) assigns an index of 0 to the most significant
element of the array. Compared to a little-endian indexing
scheme, the big endian scheme accesses the same bits (or
array elements) by starting at array indexsize - 1and de-
creasing to zero.

Arrays declared within arrays can have differing endian-
ness. This is accomplished by declaring the arrays with a
different endianness and combining the types. For instance,
a little-endian array of 32-bit big-endian values (declared in
this context asuint32) would be declared thus:

little uint32[1024] memory;

Note that this does not refer to an array of 1024uint32ele-
ments whose endianness has been converted to little-endian.
Instead, this is an array that is indexed in a little-endian fash-
ion, and each element in the array is in turn a bit array in-
dexed in a big-endian fashion.

As a further example, this multi-dimensional array dec-
laration describes the pattern representing memory as seen

3



by the Intel family of processors. Memory consists of an
array of words accessed as little-endian, each word consists
of four bytes accessed as little-endian, and each byte is a
size 8 bit array accessed as big-endian.

big bit[8] byte;
little byte[4] word;
little word[1024] memory;

Converting from one endianness to another without al-
tering the bit pattern is possible through straight assignment
from a variable with one endianness to one with the oppo-
site endianness. The resulting array, when viewed from the
original endianness, will appear to have a different abstract
value.

Sign CMDL admits two kinds of sign modifiers:signed
andunsigned. The purpose of these modifiers is to deter-
mine how sign-sensitive operators should interpret the ab-
stract value of a bit pattern. Sign modifiers also may have
effects such as sign extension if a bit array of smaller size is
coerced into one of a larger size.

3.2.3 Subranges

Subrangesallow one to refer to sub-portions of a type. Sub-
ranges are to types as references are to bit arrays. Subranges
are also analogous to union types in C, where the same
space can be interpreted according to different representa-
tions. Here is an example of a type declaration followed by
a subrange declaration based upon that type:

type uint = bit[32];
subrange fb = bit[1] @ uint[0];

The subrange declaration specifies the size of the new type
in bits as given bybit[1] , and the start location of the sub-
range within its containing type (given byuint[0] ).

Subranges can subsequently be used in references in the
same manner as C unions. For example:

uint r1;
r1.fb = 1;

Here, a variabler1 of typeuint is declared, and the bit cor-
responding to subrangefb is set to 1.

Subranges of subranges are allowed, but recursive sub-
ranges are forbidden. It is also possible to have a subrange
with different type modifiers from the type that is being sub-
ranged. Here is an example based upon the IEEE 32-bit
Floating Point format:

type ieee32FP = big unsigned bit[32];
subrange sign = bit[1] @ ieee32FP[0];
subrange exp = bit[8] @ ieee32FP[1];
subrange mant = little bit[23]

@ ieee32FP[9];

In this example, the mantissa portion of theieee32FP
type is little-endian even though the encapsulating type is
big-endian.

3.3 Operators

CMDL provides several primitive operators that perform
operations on bits and bit arrays. Arithmetic operators re-
turn a bit pattern that represents the result of the abstract
operation. Boolean operators return a bit representing the
truth value of the operation—1 for “true” and 0 for “false”.
A detailed account of the operators appears in the CMDL
manual.

3.4 Classes

CMDL also contains facilities for using classes. Classes are
used in much the same manner as conventional object ori-
ented languages such as Java, but there are several restric-
tions on them unique to CMDL:

• Classes can contain both data and method-like decla-
rations (seeAttributes, below).

• There are no interface types, such as in Java.

• The inclusion of a class within another class defini-
tion imposes a special restriction. In a general object-
oriented language, if the definition of class A includes
another class B, the member present once the object of
type A is instantiated can have a class of type B or any
subclass of B. However, CMDL requires static knowl-
edge of the sizes of every bit array within a type. A
situation like that above involving a subclass of un-
known size makes this determination difficult if not
impossible. Since the containment of one class within
another is such a useful construct, the inclusion is al-
lowed with the condition that if a member of one class
is another class, the included member may only be of
the included class, not from one if its descendants. The
net result of this restriction is that the size and com-
position of CMDL classes are uniquely determined at
compile time—there are no references or pointers to
other classes. The need to know all sizes at compile
time is also the reason why recursive subranges are not
allowed.

• Single inheritance is allowed, as are functions as in
conventional object-oriented languages.

3.4.1 Attributes

Attributesin CMDL are rough analogues to class methods
in other object-oriented languages. They are meant to con-
vey properties of a class rather than explicitly executable
code. For example, say there exists a classinst add that

4



represents an add instruction in a particular ISA. The ma-
chine description we are constructing will be used to gen-
erate a simulator and a disassembler. Therefore, we need
two attributes to fulfill the needs of these tools: aneffectat-
tribute that represents the semantics of the add instruction,
and anasmattribute that represents the textual representa-
tion of the instruction. Here is an example of a class with
these attributes:

class inst_add
{

big unsigned bit[6] ra;
big unsigned bit[6] rb;
big unsigned bit[6] rd;

effect() {
addi()

}

asm(ra,rb,rd) {
"addi"

}
}

Theeffectattribute contains a call to amixin, which is a se-
mantic building block (analogous to a function) described
later in this section. Note that theaddi mixin takes no
parameters; the definition is given below. Theasm at-
tribute returns a format string corresponding to the assem-
bler mnemonic of the instruction. The names and format
of these two attributes arise from the manner in which the
CoGenT tool set will interpret and use them to produce the
simulator and assembler. This is further detailed in Sec-
tion 4.

3.4.2 Constraints

CMDL also allowsconstraintson the value of class mem-
bers. Constraints represent restrictions on the values of
class members. They are useful for representing common
semantic actions such as instruction parsing (decoding) and
emitting (encoding). For decoding, a constraint validates
the identity of the containing class based upon the given
constraints on its members (i.e., checking for equality). For
emitting, a constraint dictates the values of member fields
that must be emitted (i.e., assignment to an output value).
This duality of semantics allows the machine description
writer to express one of the primary actions of encoding and
decoding within a single concise syntax. Note that equality
is currently the only constraint that is supported. Here is an
example of a class that contains an unsigned bit array, the
first two bits of which are each constrained to be 1:

class A
{

big unsigned bit[8] byte;
big unsigned bit[2] hiBits @ byte[7];

hiBits = 0x3;
}

3.4.3 Mixins

As mentioned previously,mixins are semantic building
blocks that may be used to implement functionality within
attributes. Semantic functionality, i.e., functionalitythat op-
erates on patterns as opposed to describing them, is very
important when attempting to generate tools such as simu-
lators from a machine description. In that case, the seman-
tics of each instruction in a particular ISA would be built up
from mixins.

A mixin in CMDL is a class that contains only meth-
ods, which are closer in spirit to methods in the traditional
sense (functions). These methods may contain free vari-
ables that refer to another class or mixin, with the condition
that the CMDL compiler must be able to resolve all of the
free variables at compile time within the scope of the class
that calls the methods of the mixin. At that point, a fully
specified method is achieved, and can be used to operate
on patterns. Using mixins in this manner is useful for any
kind of ISA, but it is especially useful for instruction sets
that possess different instructions that utilize common se-
mantic elements such as register access or a specific form
of addressing. In our model, a mixin may be set up for
each addressing mode and each type of register access, and
the machine description writer will not have to specify an
implementation of each of these semantic elements in each
instruction that needs them. The writer only has to use the
mixin, and CMDL will “mix” the mixins correctly to obtain
the proper implementation.

Here is a simple example of a mixin namedarith,

mixin arith requires(ra,rb,rd)
{

addi() { gp[rd] = gp[ra] + gp[rb] }
}

This mixin introduces the keywordrequires, which re-
quires that the three variablesra, rb, andrc be defined in
the scope of the class using the mixin. The name of the
mixin, arith, defines a form of namespace, so that mixins
with identical signatures but different method implementa-
tions can be used. The body of the mixin defines the method
addi, which adds the contents of two registers and stores
them in a third. The meaning ofgp is actually part of what
is known as themachine state description. This will be ex-
plained further in Section 4, but suffice it to say that it rep-
resents the register file. In the previous section concerning
attributes, we described a class that uses the methodaddi,

5



but that class was not complete because the source of the
method was not specified. Here is the complete definition
of that class:

class inst_add uses arith
{

big unsigned bit[6] ra;
big unsigned bit[6] rb;
big unsigned bit[6] rd;

effect() {
addi()

}

...
}

This class now specifies the source of theaddi method
as the mixinarith. The class also defines the three regis-
ter identifiers required by the mixin, so the method is fully
specified at compile time. It is also possible to pass these
identifiers into the specification of the mixin in theinst add
definition as follows:

class inst_add uses arith(ra=rx,rb=ry,
rd=rz)

{
big unsigned bit[6] rx;
big unsigned bit[6] ry;
big unsigned bit[6] rz;

effect() {
addi()

}

...
}

This example simply assigns an alias to variables defined
in the class so they may be resolved by the mixin. It is also
possible to use mixins in a “macro” sense with constants,
but that will not be discussed here.

In sum, mixins are semantic building blocks that can be
used to build up class attributes. They enable the machine
description writer to adjust the granularity of the needed se-
mantic pieces to the most convenient level of detail, and
provide an automatic means of integrating them correctly.
This way, instead of representing the Cartesian product of
the semantic elements, one can simply represent each ele-
ment and the necessary combinations.

4 CMDL and the CoGenT Project Frame-
work

Having laid out in detail CMDL we now describe more
concretely the system within which this language will ex-
ist, illustrated in Figure-1. The figure shows the flow of
CMDL descriptions through the CoGenT system. The de-
scriptions of various aspects of a machine (instruction syn-
tax/semantics, pipeline, etc.) written in CMDL begin at
the far left of the figure. These descriptions will be pro-
cessed by front-end tools and compiled into an intermediate
representation. This intermediate representation will then
be used by back-end tools to generate components to be
plugged into the back-ends of compilers and simulators.

Although this paper has focused on the descriptions of
instruction set architectures we envision an entire collec-
tion of descriptions covering all aspects of a machine, such
as architecture pipelines, machine storage locations, calling
conventions, and others. These descriptions will have the
same flavor as CMDL so it is not only easier for the user
who must learn the language but also will provide for easier
construction of tools that will process those descriptions.

Front-end tools are responsible for parsing the set of ma-
chine descriptions as well as performing semantic and type
analysis to ensure language correctness. It may be the case
that a particular description may reference elements that
have been defined in other descriptions. It might also be
the case that some description may want to refer to enti-
ties defined in several different descriptions depending on
the particular machine we are working with. For example,
we might want the semantics of instructions defined for ar-
chitecture A to use the definition of the store for machine
A during a particular component generation phase and use
a different version of that machine store, say A.2, during
another generation phase. To provide for such flexibility
in machine description composition a manager, as shown in
the figure, resides between the machine descriptions and the
front-end tools.

By separating the composition of machine descriptions
from the front-end tools we maintain a simple and clean
interface between the description languages themselves and
the tools that process them. This in turn allows us to create
more front-end tools quickly and easily. It is important to
recognize in a system such as CoGenT that the ability to mix
and match architecture specifications provides for a more
flexible environment for exploration and experimentation is
just as important as the flexibility of the language in which
those specifications are written.

The front-end tools are responsible for resolving all ref-
erences to variables and types that are defined in the ma-
chines descriptions. Once this is accomplished, the front-
end tools emit an intermediate representation that is fully
resolved according to the input descriptions. This interme-

6



Machine
Description

ISA
Description

Pipeline
Description

.

.

.

M
a
n
a
g
e
r

Tool

Tool

User Supplied
Descriptions 

(Possibly Incomplete)
Front End Tools CoGenT IR

(Fully Specified)

Simulator
Generator

BURS
Generator

Assembler
Generator

CoGenT
S-Exprs

Machine

Pipeline

.

.

.

Back End Tools

CoGenTAsm
JikesAsembler

Jikes-Specific 
Tools

CoGenT 
BURS
Jberg

.

.

.

ISA

Figure 1. Architecture of the CoGenT System

diate representation is intended to be in a simple form that
allows back-end tools to process it easily and efficiently.
Because the complexities of program analysis have been
accomplished already by the front-end tools, it allows the
back-end tools to focus on the particular components they
must generate. This “compiled” form also represents an in-
stance of an architecture produced by the machine descrip-
tions. It may be the case that we wish to produce several
different instances that have small variations in order to ex-
plore new architectural ideas.

The back-end tools transform the intermediate represen-
tation originating from the machine descriptions into com-
ponents that are to be “plugged in” to existing system tools
and frameworks. A sample of an existing compiler frame-
work for which we intend to generate compiler back-end
components is the Jikes RVM Java virtual machine. We
have considerable experience using and modifying the Jikes
RVM, which developed at IBM Research. It is now avail-
able as an open source system, with many academic re-
search groups using it for work in compilation. Jikes RVM
includes both a baseline compiler (which provides very lit-
tle optimization) and an optimizing compiler. The baseline
compiler compiles Java bytecodes directly into the target
machine code, whereas the optimizing compiler has several
layers of intermediate representations.

To generate compiler components for the Jikes RVM op-
timizing compiler we will include a machine description for

the IR used in the Jikes RVM as well as for the target archi-
tecture. Using the bounded heuristic search technique de-
scribed by Cattell [1] in the CoGenT back-end tool we will
be able to match the semantics of the Jikes RVM IR to the
semantics of the target architecture, and to generate BURS
rules [3] that map the IR to the target architecture. While
the optimizing compiler is designed to be retargetable us-
ing BURS rules, the baseline compiler is not designed in
a retargetable way. We need to determine how to generate
an efficient baseline compiler from semantic descriptions of
the Java bytecodes (the “IR” in this case) and the target ISA.

Similarly, we will have back-end tools that will gener-
ate components that will plug in to a simulation framework
we will develop from scratch. We will base it on existing
systems, such as SimpleScalar [2], but the automatic retar-
geting that is the essence of our approach means that many
pieces will be new. We view a simulator as consisting of
many kinds of components. Of these, the ones we propose
to generate automatically from ISA and timing descriptions
in the back-end tools are instruction semantics and instruc-
tion timing. We assume that the remaining semantics and
timing components present suitable interfaces to call, and
to be called by, the generated instruction-related compo-
nents. We plan to offer a modest range of options in the
simulator framework of semantics and timing components,
such as branch predictors, caches, and memory organiza-
tions. There will also be a particular emphasis on instru-

7



mentation in the simulator framework.

5 Future Work

In the immediate future we will have the CMDL implemen-
tation complete and well tested. This includes not only the
parser but a full set of front-end tools and a fully specified
intermediate representation. In the longer term our inten-
tions are extensions of CMDL for describing architectural
details, and to design and implement a simulator frame-
work. A major portion of this framework will consist of a
collection of retargetable support components (cache mod-
els, linkers, loaders, language run-time system, OS inter-
face, etc.). Concurrently, we will be constructing the nec-
essary back-end for consuming our intermediate represen-
tation and generating correct and reasonably efficient ver-
sions of all target-dependent simulator components. Fol-
lowing the completion of our front-end tools, further Co-
GenT development will occur on two parallel tracks. One
track is concerned with constructing the simulator frame-
work and component generators described previously. The
second will progress towards automatic code generator gen-
eration from machine descriptions, building on the work of
Cattell [1].

6 Conclusion

CMDL, although inspired by previous efforts, was designed
from scratch and is different from other machine description
languages in several notable ways. First, CMDL’s Java/C
like syntax was designed to be sufficiently generic to be use-
ful across multiple sub-domains of the machine-description
space. This would remove the current language barrier be-
tween obviously related descriptions. Second, CMDL em-
ploys a restricted form of object-orientation to aid the de-
scription of instructions and machines. Class inheritance
provides a convenient way step-wise to define instruction
groups (particularly in orthogonal instruction sets). Also,
inheritance allows shared features to be defined in par-
ent classes, and thus partial descriptions are easy. Third,
CMDL is a strongly typed language whose fundamental
types are bits and arrays of bits. This single feature alone
allows us to describe any binary machine. In addition, the
ability of users to define their own types allows the CMDL
programmer to define complex machine structures both eas-
ily and cleanly. Because of these features we believe that
CMDL is an excellent language for accomplishing the var-
ied and distinct goals of the CoGenT project.

References

[1] R. G. G. Cattell. Automatic derivation of code generators
from machine descriptions.ACM Transactions on Program-

ming Languages and Systems, 2(2):173–190, Apr. 1980.
[2] D. C.Burger and T. M. Austin. The SimpleScalar tool set,

version 2.0. Computer Architecture News, 25(3):13–25,
June 1997. Extended version available as Univ. of Wisc.
Comp. Sci. Tech. Rep. 1342, June, 1997.

[3] C. W. Fraser, D. R. Hanson, and T. A. Proebsting. Engi-
neering a simple, efficient code generator generator.ACM
Letters on Programming Languages and Systems, 1(3):213–
226, Sept. 1992.

[4] L. George and A. Leung. MLRISC: A framework for re-
targetable and optimizing compiler back ends. availble at
http://cs1.cs.nyu.edu/leunga/www/mlrisc/doc/html/.

[5] A. Halambi and P. Grun. EXPRESSION: A language for
architecture exploration through compiler/simulator retar-
getability. In Proceedings of the European Conference on
Design, Automation and Test. DATE, Mar. 1999.

[6] R. Lipsett, C. F. Schaefer, and C. Ussery.VHDL: Hard-
ware Description and Design. Kluwer Academic Publish-
ers, 1989.

[7] C. W. Milner. Pipeline descriptions for retargetable com-
pilers: A decoupled approach. Technical Report CS-99-11,
University of Virginia, June 1998.

[8] S. R. of Machine Instructions. Norman ramsey and mary f.
fernandez.ACM Transactions on Programming Languages
and Systems, 19(3):492–524, May 1997.

[9] S. Onder and R. Gupta. Automatic generation of microar-
chitecture simulators. InIEEE International Conference on
Computer Languages, Chicago, IL, May 1998. ICCL.

[10] N. Ramsey and J. W. Davidson. Machine descriptions to
build tools for embedded systems. InACM SIGPLAN Work-
shop on Languages, Compilers, and Tools for Embedded
Systems (LCTES ’98), pages 172–188, June 1998. Available
as Springer Verlag LNCS 1474.

[11] E. Schnarr, M. D. Hill, and J. R. Larus. Facile: A language
and compiler for high-performance processor simulators. In
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation. ACM, 2001.

[12] E. C. Schnarr. Applying Programming Language Imple-
mentation Techniques to Processor Simulation. Ph.d. dis-
sertation., Computer Sciences, University of Wisconsin–
Madison, 2000.

[13] D. Thomas and P. Moorby.The Verilog Hardware Descrip-
tion Language. Kluwer Academic Publishers, 1995.

8


