CoGenT Language Manual

Version 0.1

1 Types

1.1 Built-in Types
The CoGenT description language supports two forms of-butlgpes:

e bit arrays

e references to bit arrays

1.1.1 bitarrays

A bit array is a type that can be used to store a set of bit values. Indiviits are accessed by their index into the
array surrounded by brackets. A bit array can be set by dsgignvalue to an array variable and similarly a value
representation of the bits contained in a bit array may tréexetd by referring to that array. A bit array is declared
using thebit keyword and a size contained within square brackets. Fanpbeg we can define a variable nanipst
that is a bit array of size 32,

bit[32] inst;

It is also possible to have multidimensional bit arrays. Tdllewing declares a bit array variabtegsthat is 32 rows
of 32 bits in each row.

bit[32,32] regs;

We can retrieve values using the following syntax,

inst refers to the value represented by the 32 bits
inst[31] refers to single bit 31

regs[4] refers to the value of all 32 bits at index 4
regs[4,5] refers to single bit 5 of the 32 bits at index 4

Assignment to bit arrays is allowed provided that the sizeé mummber of the dimensions are the same. For instance,
the following are valid:

bit[30, 29] uneven;
bit[30, 30] even;
bit[30, 29] uneven2;
bit[32] uint32;
bit[32] integer;

uneven = unevenz;
uint32 = integer;



But the following are invalid:

uneven = even;
even = uneven;
even uint32;

1.1.2 references

A referenceo a bit array allows us to treat a range of bits within a praslg defined array as another bit array. This
reference or alias can then be operated on as if it were arhit @self. References are useful when we want to view a
range of bits as an individual unit within a larger set of bif&e following shows a 6 bit reference of threst bit[32]
array declared above,

bit[6] op @ inst[31];

What we are doing here is also known as providingaerlayon a previously defined bit array. It is also possible to
recursively provide overlays on references, we discusstiore when we talk about type definitions in a later section.
It is important to note here that any modifications to the it represent a reference in fact modify the array on
which it refers.

1.2 Type Modifiers

Type modifiers allow us to provide more information aboutetyn order to constrain that type to specific values of
which we are concerned. This extra information restrictsittierpretation of the kind of values we are allowing a
particular type to refer to. The following type modifiers aterently defined,

unsigned

signed interpreted aswos-complemeritinary encoding

big interpreted as a big endian value. (array indexing dependsis)
little interpreted as a little endian value. (array indexing delgem this)
overlay  allows references to baverlayedon the type defaul).

field disallows references to lmverlayedon the type.

The following is an example of a bit array declaration usiyyget modifiers,

unsigned big bit[32] inst;
Notice here that this is also implicitly asverlay We could have also declared the above as,

overlay unsigned big bit[32] inst;
Both of these declarations are equivalent. Type modifienslmesspecified multiple times and conflicting type speci-
fiers may also be listed. In these situations the left-mosti§pr has precedence, however, the parsing program will
report informational messages noting the conlicts. So énftlowing example® is an unsigned big-endian array,

andl is a signed little-endian array.

big little little unsigned big bit[32] b;
signed signed little big unsigned little signed bit[32] I;



1.2.1 Endianness

Endianness determines the meaning of indexing. A littleéa@mdrray assigns an index of O to the least significant
element in an array. A big endian array assigns an index oft@etanost significant element of an array. Compared
to a little endian indexing scheme, the big endian one aesdbg same array elements by starting at array index size
- 1 and decreasing to zero. Sub-elements each having differidiannesses can be created by declaring arrays of
elements of a different endianness and combining the typesinstance, a little endian array of 32-bit big endian
values (iint32 ) would be declared thus:

little uint32[1024] memory;

This is not an array of 1024int32 s whose endianness has been converted to little endianRasiser this is an
array that is indexed in a little endian fashion, but whosenents are indexed in a big endian manner. The following
code accesses the most and least significant bits inith®2 stored at 512:

bit msb = memory[512][0];
bit Isb = memory[512][31];

This code simulates the memory as seen by Intel processithsmemory word-indexed as little endian, each word
accessed as four little-endian bytes, and the bytes withiord accessed as big-endian:

big bit[8] byte;
little byte[4] word;
little word[1024] memory;

Another desired operation may be to convert a value from owkaaness to another. To change the indexing, but
preserving the value is accomplished through type-castiige other endianness. For example, after the following
code is done, the value bfwill be the same as the value bf

OXDEADBEEF;
(big)!;

litle bit[32] |
big bit[32] b

Sometimes it may be necessary to change the indexing buh@aictual order of the bits themselves. This is accom-
plished through assignment to a variable with a differemti@mess. For example, the result of the following code
will be thatb will have the valu®©xDEADBEEFandl will have the valu®xF77DB57B.

big bit[32] b = OXDEADBEEF;
little bit[32] | = b;

1.3 Sign

Cogent allows two kinds of sign modifiersigned andunsigned . The primary purpose of these modifiers is to
determine how sign-sensitive operators should interpvatue. For instance if a signed value 3 bits wide is extended
to 10 bit width, the value of the new bits is dependant uponsiga (0 for unsigned values, and MSB for signed
values). Because signed values are interpreted as beirggdgar@plement form, signed values may require 1 more bit
to represent them than the value may suggest. For instdrecansigned value 3 can be represented in 2 lfit$),),

but the signed value 3 requires 3 bits (101)3 ).



1.4 Constants

CoGenT allows for the specification of constant data. CoGehdws the C/Java style for such specifications. Strings
of digits are assumed to be in decimal, hex values are prefikéd0x”, octal values are prefixed by “00”, and binary
values are prefixed with “Ob”. The follwing declarationssgglecify the same constant value.

10;

OxA;
0012;
0b1010;

O OTUTUT

Note that constants have no particular size. Although ataohsalue may require a certain minimum number of bits
to represent it, there is no reason why it can’t be stored argel number of bits. The size of values is important for
many operators and so CoGenT requires that the programeefisthe type of a constant value. Note that this is not
as burdensome as it may seem. A type declaration for actypst can be made and all constants declared therewith.
For example:

type const = unsigned big bit[32];
const b = 0b1010;

The preceding code effectively causes all constants taittea32bit representation (useful for a 32-bit architeefu
no?). It also has the valuable side-effect of annotatingtvkalues in the code are constants.

1.5 Type Declarations

Now that we understand the simple built-in types providetheyCoGenT language, it is important to have the ability
to build more complex types. The CoGenT language providesithe form oftype declarationsA type declaration
allows us to incrementally build types which may also be urdte definition of other type declarations. This gives
us the ability to represent collections of bit arrays in twily complex ways. For example, it may be the case that all
the items that we want to talk about are unsigned big-endianitntegers. We do not want to specify this information
for every variable declaration. Instead, we prefer to @eatew type which represents those traits we are concerned
about,

type uint = big unsigned bit[32];
We can now declare variables to be of typat,

uint inst;
uint[32] regs;

Notice here that we can also specify a size on the type as wledidnt[32] . It should be clear that what we are
declaring is 32 rows of 32 bits and each of those 32 bit rowba@yr@ndian and unsigned.

1.6 Subranges

Another kind of type declaration is calledibranging Subranges are to types as references are to bit arraysasjust
references are used to refer to a portion of a particulartayasubranges allow us to refer to portions of another type



by name. These subranges can be thought of as a union typepnagramming language C. The following example
shows a type declaration followed by several subrange deidas,

type uint = bit[32];

subrange fb = bit[1] @ uint[O];

subrange sb = bit[1l] @ uint[1];
subrange slb = bit[2] @ uint[30];

We could then declare a variable of typit and refer to its subranges,

uint ril;

rl.fo = 1;
rl.sb = O;
rl.slbb = 3;

If we were to translate this into an equivalent C like unioe,wmould have something like the following,

struct subranges {

fbo : 1;
sb : 1;
pad : 28;
slb : 2;
h
union {
unsigned int ri;
subranges s;
} url;
urls.fb = 1;
url.s.sb = 1;
url.s.slb = 3;

Itis also possible to have subranges of subranges. For dgawgcould have the following declarations,

type footype = bit[4];

subrange mid = bit[2] @ footype[1];
subrange left = bitfl] @ mid[0];
subrange right = bit[l] @ mid[1];
footype bar;

bar.mid = 3;

bar.mid.left = 0;
bar.mid.right = 1,

Itis not possible to have recursive subranges.

It is possible to have subranges of a different endianna$signedness from the type it is subranging. The following
example illustrates such a use:



type ieee32BitFloatingPoint = big unsigned bit[32];
subrange sign = bit[l] @ ieee32BitFloatingPoint[31];
subrange exp = hit[8] @ ieee32BitFloatingPoint[30];

subrange mantissa = little bit[23] @ ieee32BitFloatingPoi

In this example, the mantissa portion of tieee32BitFloatingPoint

encapsulating type is big-endian.

1.7 Operators

nt[22];

type is little-endian even though the

CoGenT provides several primitive operations on bits ahdtbays. Boolean operations return a bit, 1 for true, O for
false. The following table illustrates the operations s table the string<value>" is the value being operated on.
Anything betweernx > is to be provided by the user. In the following table refeeio the front of a variable mean
the MSB of the variable, while refrences to the back of a \@eianean the LSB of the variable.

Boolean Operations

comparison ==

<>,<,> <>, <= >=

AND &&

OR I

XOR -

NOT -

operation | syntax notes

front resize #(<value>, <new size>, <padding>) resizes<value> to <new size>, adding
<padding> to front, if necessary

back resize ##(<value>, <new size>, <padding>) resizes<value> to <new size-, adding
<padding> to back, if necessary

sign extend I(<value>, <new size>) = #(<value>, <new size>,((little) <value>)[0])

zero extend I0(<value>, <new size>) equivalent to #value>, <new size-, 0)

2's complement -<value> standard 2's complement

concatenation <valuel> :: <value2- appends<value2> to <valuel>

bitwise AND & pads front of short argument with zeros

bitwise OR | pads front of short argument with zeros

bitwise XOR - pads front of short argument with zeros

bitwise NOT ~

shift << >> left shift, right shift, padding depends on sign
(signed— sign-preserving padding,

unsigned— zero padding)

rotate <K< >>> Rotation of a value

population count $1l(<value>), $0(<value>) counts number of 1s and Os, respectively

+,—, =, +,-,/,* short argument is padded with zeros
(WHAT ABOUT OVERFLOW??)

modulo % Mathematical modulus (e.g-1 = 3(4))

increment, decrement <value>++, <value>— increments and decrementyalue>

assignment <valuel> = <value2- <valuel> and<value2> must have the same
number of dimensions and same size, just
copies<value2> into <valuel> bit by bit

type cast (<type>)<value> produces a new variable of typgype>
with value derived from<value>.




2 Classes

The CoGenT specification language allows for the use of etasEhese classes are similar to classes from general-
purpose object oriented languages. However, the CoGes§adehave several unique restrictions. CoGenT classes
can contain data and methods. CoGenT classes supportisingtéance. There are no interface types such as in Java.
Another important distinction is the inclusion of a classhii another class. In a general dynamic O-O language, if a
class A includes another class B, the data referred to as Bean object of type B, or an object of a class descended
from B. What this means is that it is difficult (Ssometimes irapible) to determine the size of a class that includes other
classes. Because this is such a potentially useful feaa®enT allows a restricted form of inclusion. In CoGenT,
when a class contains a member that is another class it mearthé included member can only be from that class
— not from a descendent. Trying to assign an instance of aaddaat class to that member is therefore an error. In
the following example, class B contains an instance of A. ¥ithia means is that instances of B will contain two bit
arrayshalf andbyte (from A). Suppose we create a B namedaland a C namedc, the following code fragment
would be an errorab.foo = ac;

class A

{
}

class B

{

little bit[8] byte;

big bit[16] half:
A foo;
}

class C extends A

{
}

bit bar;

As a consequence of this, when a CoGenT class is declaredltmlénsome data, that means that the class literally
contains that data at that point. In short, CoGenT classeshareferences.

2.1 Attributes

Unlike class definitions in object-oriented languages sischava, a CoGenT class can define what is calledtabute
instead of a method. An attribute has the look and feel of datkbut is meant to convey properties of a class rather
than executable code. These attributes are dependenthspparticular description we are composing. For example,
if we are writing a description for instruction set syntaxmway be required to define an attribetiectand an attribute
asm They would look somewhat like the following,

class inst_add

{
big unsigned bit[6] ra;
big unsigned bit[6] rb;
big unsigned bit[6] rd;



effect() {
addi()
}

asm(ra,rb,rd) {
"addi”
}
}

The effectattribute requires a “call” to anixin function (more on these later) which defines the semanticimgaf

an instruction. Thesmattribute requires a format string which defines the assgsthihg output of an instruction.

It may seem that attributes are exactly the same type of thinmethods. They look the same and they appear to
convey the same type of meaning. They are, however, quiteréift ssmantically and are meant as an expressive
form of conveying descriptive information of the type of et the class is attempting to describe. The meaning of an
attribute may be interpreted quite differently betweeifedént descriptions. We defer what this means exactly to our
discussion later on the construction and interpretatic®@a®enT machine descriptions.

2.2 Constraints

An additional feature that seperates a CoGenT class fromaralatd type declaration is that a class can include
constraints on the value of a member. A constraint has thewirlg form: <field name> = <contrained

value> . This is useful for generating instruction parsers and temsit For parsing, a constraint implies that the field
will have the constant value. For emitting, a constraintliegthat the emitter needs to write out that constant value t
the emitted instruction. The following code describes axtaat contains an unsigned byte, the first two bits of which
must be 1.

class A
{
big unsigned bit[8] byte;
big unsigned bit[2] hiBits @ byte(7);

hiBits = 0x3;
}

2.3 Mixins

As mentioned previously, CoGenT classes may corgtiibute definitions. These are only meant to convey specific
pieces of information regarding the class we are trying sxdbe and are not meant as executable code in any way (as
demonstrated by the definition of the claski). It may be, of course, that we do want to attach a form of etedade-

like code to a class. This is clear when we are describingehgastic actions of instruction set architectures. We
would like to express the function of a particular instranotl; as one with the following signaturé, = S = S’, where

S is some machine state ai is a new machine state. In other words, we would like to defieenheaning of an
instruction in terms of some machine state and a new reguttachine state.

The mechanism used for this is mixins. A mixin is basicallyi@ss containing only methods These methods may
contain free variables which refer to the members of somesdach that, when the methods of a mixin are actually
used within a given class, all the free variables will be lbwithin that object (and therefore all the types will be

known). This is useful for specifying the semantics of instions, as different implementations of a method could



co-exist and be chosen by mixing in one rather than the ofis. obviates the need to have method overloading and
of specifying ‘dummy’ placeholder methods high in the iritearce tree in order for all the children to have access
to the method. With mixins, any class can use any defined miirch uses may cause errors (mixing in multiple
conflicting implementations), but those can be detectd@tatly. While CoGenT classes are a means for composing
interelated forms of data (as in instruction set syntax ochiree state), mixins are a powerful tool for composing
interelated forms of semantic meanings of architecturalmmnents. We can then use attributes as a way to bridge the
syntactical details with the intended meaning.

Here is a simple example of a mixin,

mixin arith requires(ra,rb,rd)

\ addi() { gp[rd] = gp[ra] + gp[rb] }

The above defines a mixin namadth . This mixin requiresthat the class using the mixin must have defined
variables named ra, rb, and rd. The body of the mixin definemetion,addi , for the addition of two registers and
the result of which is stored into a third destination regjisthe actual meaning afp is explained in a later section
on the machine state description, those details are notssaeg for understanding the use of mixivge showed in
the section omttributesan attribute nameffectwhich used a mixin by the name afldi . That example was missing
some details, we complete it here:

class inst_add uses arith
{
big unsigned bit[6] ra;
big unsigned bit[6] rb;
big unsigned bit[6] rd;

effect() {
addi()
}

Previously, we left out theises arith  declaration of the class. It is, of course, necessary toifypebich mixin
you are using. We could have also defined that class as,

class inst_add uses arith(ra=rx,rb=ry,rd=rz)
{

big unsigned bit[6] rx;

big unsigned bit[6] ry;

big unsigned bit[6] rz;

effect() {
addi()
}



In the above example, we are simply assigning aliases tablas defined in the clagsst _add to be used in the
arith  mixin. Itis also possible to use constants which give mixirimacro” like quality,

class inst_add uses arith(ra=1,rb=2,rd=1)

{
effect() {

addi()
}

Note in the above example that we in fact changed the “meaihthe use of theaddi function by making the
destination registerd, the same as one of the source registers,

It is important to note that it is also possible to have miximat “use” other mixins. These more advanced forms of
composing mixins are demonstrated in the discussion offépatachine descriptions later in this manual.

3 Descriptions

The goal of Cogent is to provide a collection of tools for whitis possible, given partial or total descriptions of
a machine, instruction set, instruction semantics, agchire pipelines, calling conventions, and others, to gdae
useful and necessary components for compilers and simsilakbe purpose of the CoGenT language is to allow the
description writer to do this easily, consistently, incesrtally, and in a modular fashion. The CoGenT language also
aims for simplicity and expressiveness without sacrificompleteness. The following sections describe severaktyp
of descriptions ospecificationshat are possible with the CoGenT language.

3.1 Machines

A machine description describes the abstract state of aimaffor semantic purposes).

3.2 Instructions

An instruction description gives a hame to a grouping ofringions (perhaps specified by parent class?).

3.2.1 Syntax

3.2.2 Semantics

4 Formal Grammar

<identifier> = [A-z][0-9,A-Z]*

<pos integer> = [0-9]+ /ldecimal
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| Ob[0,1]+ //binary
| 0o[0-7]+ /loctal
| Oh[0-9,A,a,B,b,C,c,D,d,E,e,Ffl+ /hex
<neg integer> = - <pos integer>
<integer> = <pos integer> | + <pos integer> | <neg integer>
<float> = //[FIXME: fill this in
<constant> = <integer>
| <float>
/[FIXME: maybe we need strings?
<endianness> = big | little

<sign> = signed | unsigned

<array dims> = <pos integer>
| <pos integer> , <array dims>

<array spec> = [ <array dims> ]

<type spec> = <endianness> <sign> bit <array spec>

| <endianness> bit <array spec> /ldefault sign

| <sign> bit <array spec> /ldefault endianness
| bit <array spec>

| <identifier> /luser defined type

<type dec> = type <identifier> = <type spec> ;

<variable dec> = <type spec> <identifier> ;
| <type spec> <identifier> @ <identifier> <array spec>;

<value> = <identifier> /Ivariable ref.
| ( <type spec> ) <constant> /lassigning a size and sign
<infix op> = == | <[> | <=[|>|&& || |7 |7 =& "]~
| << | >> | << | >>> |+ |-|*|/T]|% ]| =

<arg list> = EMPTY
| <argz>

<argz> = <expr>
| <expr> , <argz>

<function call> = <identifier> ( <arg list> )
<expr> = <value>

| <expr> <infix op> <expr>
| #( <expr>, <pos integer>, <expr> )
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##( <expr>, <pos integer>, <expr> )
I( <expr>, <pos integer> )
10( <expr>, <pos integer> )
$1( <expr> )

$0( <expr> )

- <expr>

<expr> ++

<expr> --

( <type spec> ) <expr>
<function call>

IIFIXME: deal with delimiters

<class dec> = class <identifier> { <class members> }

<expr list> = EMPTY
| <expr> ;
| <expr> ; <expr list>

<function body> = <expr list>
<attribute dec> = <identifier> ( <arg list> ) { <function bod y> }
<constriant dec> = <identifier> = <expr> ;

<class members> = EMPTY
| <variable dec> <class members>
| <attribute dec> <class members>
| <constraint dec> <class members>

5 Formal Semantics

5.1 Formal Array Numbering

In CoGenT, most things are arrays of one kind or another. deroto assign one array to another or operate on two
arrays a kind of equivalence must be demonstrated. In Co@enfivo arrays to be assignable to one another implies
that the two arrays are of the same size. Size, as used herthéhapecific meaning of length of the array resulting

from collapsing the type to a 1-D array.

For a 1-D array collapsing is simple. Its already 1-D and atsrfal size is its actual size. For multidimensional
arrays, the size is more complicated. In general, for a bife di,ds,...,d,] , the size of the collapsed array is
dn * dn—l L 3 dl.

To convert an informal location specificatidop[ z1,...,x,] into a formal location in the collapsed representation
of foo (foo .) requires the following sumfoo[ z1,...,2,] = foo [ by * ﬁdi + by % ﬁ d; + ... + b,] , where

b; = x; if z; is big-endian and wheflg = (d; — (1+;)) if z; is Iittle-endiaaz.gor, more ézﬁleralhjoo[ T, ey Tn)

= foo [ i b; * ﬁ d;] (where]_[f:jJrl d; for i > nis defined to be 1). This is to say thatin CoGenT, arrays are

j=1 i=j+1
considered to be in row-major order.
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5.2 Formal Meaning of Assignment

In CoGenT, assignment requires the operands to have a size.
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