International Journal of Parallel Programming, Vol. 33, Nos. 2/3, June 2005 (© 2005)
DOI: 10.1007/s10766-005-3587-1

CISL: A Class-Based Machine
Description Language

for Co-Generation of Compilers
and Simulators

J. Eliot B. Moss," Trek Palmer,' Timothy Richards,’
Edward K. Walters, II,' and Charles C. Weems'

It is currently difficult fully to understand the performance of a modern dynamic
programming language system, such as Java. One must observe execution in the
context of specific architectures in order to evaluate the effects of optimizations.
To do this we require simulators and compiler back-ends for a wide variety
of machines that are capable of handling the demands of today’s dynamically
compiled languages and their environments. We introduce here CISL, a machine
description language specifically designed for the automatic generation of simu-
lators and compiler back-end. CISL is a class-based language with a C/Java style
syntax aimed at extensibility. CISL is processed by tools to generate descrip-
tions of architectures represented in an intermediate form; the descriptions are
then further combined and processed to produce efficient compiler and simula-
tor components designed to “plug in” to existing frameworks. CISL provides the
necessary flexibility to advance the simulation paradigm to match the state of
the art in computer systems.

KEY WORDS: Language design; machine description; simulator; compiler;
instruction set architecture.

1. INTRODUCTION

Compiler and architecture performance analysis requires a highly accurate
simulation infrastructure to obtain useful results. It is important that we

IDepartment of Computer Science, University of Massachusetts Amherst, Amherst, MA
01003-9264, USA. E-mail: {moss, trekp, richards, ekw, weems}@cs.umass.edu

231

0885-7458/05/0600-0231/0 © 2005 Springer Science+Business Media, Inc.



232 Moss et al.

make observations using a compiler that is capable of producing optimi-
zations specialized to the simulated target. Both simulator construction
and compiler back-end construction are time-consuming and error-prone.
These issues seriously hamper efforts at architectural exploration and com-
piler optimization work. Also, it is difficult to obtain simulators with the
right level of detail necessary for experiments involving modem dynamic
languages, such as Java.

An integrated simulator/compiler environment, driven by higher-level
specifications, is needed to advance the simulation paradigm to match
the state of the art in computer systems. We propose a system, called
Co-GenT, that will automatically generate matching compiler back-ends
and efficient functional and cycle-based simulators. Functional simula-
tion and code emitters will be generated directly from provided machine
descriptions. Timed simulators and instruction schedulers will also be gen-
erated from the descriptions augmented by timing models.(!:? The glue
necessary to turn a code-emitter into a compiler’s code-generator will be
derived automatically from descriptions using bounded heuristic search.®

The CoGenT system is a collection of tools and libraries for manipu-
lating and transforming machine descriptions, and as such the first major
step in constructing CoGenT is the creation of a common language for
those in descriptions. CISL, the CoGenT Instruction Set Language, is a
class-based language with a C/Java style syntax. CISL aims at extensibil-
ity and modularity. In CISL, the class hierarchy and mixin functions can
be leveraged to provide clear and succinct descriptions of instruction syn-
tax and semantics. CISL provides the foundation for an adaptable system
for generating matching compiler back-ends and simulators.

This paper provides an overview of CISL. Section 2 presents some
of the prior work upon which the project is based. Section 3 contains an
overview of some of the more interesting features of CISL. Section 4 pro-
vides an explanation of how CISL is used within the framework of the
larger CoGenT project. Section 5 explores some of the upcoming topics
that will be addressed by this research, and Section 6 concludes.

2. PRIOR WORK

Machine description languages have been a topic of research for some
time. Two fairly recent languages are SLED® and A-RTL.® These lan-
guages were created separately, and although they have different syntax,
they were combined to form the basis of a confederation of languages
for the generation of compiler back-end tools. The focus of SLED was to
specify the syntax of machine instructions whereas A-RTL was designed to
specify instruction semantics.



CISL: A Class-based Machine Description Language 233

These languages had the feature that there were separate defini-
tions for instruction syntax and semantics. The disadvantage of this
approach, however, is that it ignores the inherent coupling of syntax and
semantics and makes the matching of the two the responsibility of an
additional tool. This matching makes the construction of tools that use
these languages complicated and difficult to implement. Furthermore, the
multi-language approach complicates the transcription of an architecture
manual into a complete machine description. In addition, the languages
over-emphasize a shorthand-like conciseness which has a major impact on
readability. The readability and usability issues have made the SLED/A-
RTL confederation difficult to employ in practice. It is because of these
short-comings we felt it necessary to create CISL.

An earlier language, nML,©® combined the description for both
instruction syntax and semantics. It described instructions using an attrib-
uted grammar and thus exploits the hierarchical nature of most instruc-
tion sets allowing the sharing of common structures. However, the syntax
of the nML language is insufficiently expressive to be convenient.

There are many other examples of machine description languages,
such as ADL,? EXPRESSION,® Facile,® and MLRISC,!? but these
languages are either too low-level for our purposes, require the use of spe-
cialized environments, or were designed for use with a specific tool set. In
hardware design, VHDL!D and Verilog(!? are the most common hard-
ware description languages, but we do not require the level of detail that
they provide.

Cattell’s thesis®® is an important work in automatic derivation of
code generators. Cattell built a code generator generator (CGQG) that,
given a machine description of a target, would build a CG for that tar-
get, to be incorporated into a specific compiler using a specific (but rea-
sonably generic) intermediate representation (IR). Cattell’s CGG works by
performing a bounded heuristic search, for each IR instruction, of all pos-
sible sequences of target instructions that have the same net semantics,
using semantics of the IR and of the target expressed as algebraic trees.
Cattell’s CGG worked quite well and fairly quickly even by today’s stan-
dards.

As successful as this achievement was, it had several drawbacks. The
IR that Cattell was using was itself not specified but rather hard-coded
into the CGG, whereas we desire to work from any given IR by starting
with a description of that IR, as well as of the target ISA. In addition, the
IR Cattell was using used the same architectural store description as the
target architecture. This greatly simplifies the matching process and does
not support matching from instruction sets operating on different machine
stores. Cattell’s descriptions are also not modular. Drawbacks aside, the



234 Moss et al.

core of Cattell’s work is valid and effective, and the design of CISL has
been influenced by the desire to make heavy use of Cattell’s ideas.

Machine description languages also exist for purposes other than
describing ISA syntax and semantics. To generate accurate cycle-based
simulators automatically, one needs either a micro-architectural descrip-
tion language® or an abstract method of describing timing.()’ A current
topic of our research is the construction of such a language compatible
and consistent with the CISL design philosophy.

3. AN OVERVIEW OF CISL

CISL is a domain-specific language designed to describe patterns of
bits and computation over those patterns. Each pattern represents bits
in their own abstract space, which may or may not be disjoint with the
spaces of other patterns. The real machine counterparts of these abstract
spaces are the different stores of the machine, such as registers or mem-
ory. Specifications written in CISL represent patterns in the form of clas-
ses, which contain data members and semantic methods.

This section provides an overview of some of the interesting and
innovative features of CISL, and as such it is not a complete description.
A more thorough presentation appears in the CISL manual.!3

3.1. Data Primitives

3.1.1. Bits and bit arrays

Any possible representation of information by a conventional binary
architecture can be reduced to a pattern of bits, so the basic element of
any CISL description is a bit array. A bit array is an ordered set of bit
values. Individual bits are accessed by giving the integer representing their
index (0-based) in the array, surrounded by brackets. A bit array variable
of size 32 with the name inst is declared as:

bit [32] inst;
and bit 31 within inst can be accessed by

inst [31];

CISL also supports multidimensional bit arrays. The following declares
a bit array representing a register file containing 32, 32-bit registers:

bit[32,32] regs;
and bit 5 of register 4 is accessed by

regs([4,5];



CISL: A Class-based Machine Description Language 235

In addition to reading and writing individual bits, bit arrays can be
accessed and mutated as a whole. The assignment of one bit array to
another is legal as long as the dimensions of both arrays are the same, i.e.,
the number of dimensions and the size of each dimension matches. For
example, the following assignment is valid subject to these definitions:

bit[30, 29] uneven;
bit[30, 29] uneven2;
bit[29, 30] uneven3;
bit[30, 30] even;

uneven = unevenz;
But the following are invalid:

uneven = even;
even = uneven;
uneven = uneven3s;

Note that even though wumeven and umeven3 contain the same number
of bits, their dimensions are not the same and therefore one cannot be
assigned to the other.

3.1.2. Bit array references

Bit Array References allow one to treat a range of bits within a pre-
viously defined array as a bit array in its own right. References are most
often used to represent a sub-range within a larger bit array that we wish
to manipulate independently. Note that bit array references are not cop-
ies—they access the actual bits represented by the reference, so mutation
of the reference will mutate the bits of the larger array. An informal way
of thinking of bit array references is that they provide an overlay of addi-
tional structure on top of a larger bit array. This has proven to be a useful
way to view references, so overlay is provided as an optional keyword (see
Section 3.2.2). For example, if the inst variable declared above represented
an instruction for a RISC architecture, then the first six bits of the array
might represent an opcode value (call it op) in the RISC ISA. The follow-
ing will define a bit array reference of size 6 beginning at index 15 of inst:

bit [6] op @ inst[15];

3.2. Types
3.2.1. Type declarations

For CISL to be powerful enough to describe non-trivial patterns,
it must be possible to construct more complex types from the simple



236 Moss et al.

bit arrays described above. We do this using type declarations. Type
declarations allow one to declare types that may then be referenced in
the construction of more complex types. For example, if within a specific
architecture we want to consider each register within a register file to be
an unsigned 32-bit integer, we use the following type declaration:

type uint = big unsigned bit[32];
uint[32] regs;

In terms of basic bit arrays, this defines a bit array of 32 rows, each
row of which is 32-bits in size, is indexed in a big-endian manner, and rep-
resents an unsigned value.

3.2.2. Type modifiers

Type modifiers are prepended to an array variable declaration or reference
to modify the interpretation of the bits contained within the array. Modifiers
can dictate the direction of indexing of a bit array (bigendian or littleendian),
whether the abstract value represented by the array has sign information (signed
or unsigned), and whether or not bit array references are allowed to be made to
a bit array (overlay or final). Note that type modifiers do not change the actual
pattern of bits within the array, only the meaning of the array within a larger
context. It is possible to preserve the abstract value of a bit array but change
the bit pattern (e.g., changing endianness).

Type modifiers may be specified any number of times in a particular
declaration or over nested declarations (see Section 3.2.3). Conflicting type
specifiers, such as little big bit[32] are also allowed, with the convention
that the leftmost modifier in a declaration has precedence. CISL parser
will report the conflicts so the description writer is aware of them.

For multi-dimensional arrays, it is possible to have a different set of
type modifiers for each index. This is accomplished by declaring the array
elements independently, and combining them using a type declaration.

Endianness, determines the direction of indexing on a bit array. A bit
array declared as little-endian (keyword little) assigns an index of zero to
the least significant element of the array. A bit array declared as big-en-
dian (keyword big) assigns an index of zero to the most significant element
of the array. Compared to a little-endian indexing scheme, the big endian
scheme accesses the same bits (or array elements) by starting at a array
index size-I and decreasing to zero.

Arrays declared within arrays can have differing endianness. This is
accomplished by declaring the arrays with a different endianness and com-
bining the types. For instance, a little-endian array of 32-bit big-endian
values (declared in this context as uint32) would be declared thus:



CISL: A Class-based Machine Description Language 237

little uint32 [1024] memory;

Note that this does not refer to an array of 1024 unit 32 elements
whose endianness has been converted to little-endian. Instead, this is an
array that is indexed in a little-endian fashion, and each element in the
array is in turn a bit array indexed in a big-endian fashion.

As a further example, this multi-dimensional array declaration
describes the pattern representing memory as seen by the Intel family of
processors. Memory consists of an array of words accessed as little-endian,
each word consists of four bytes accessed as little-endian, and each byte is
a size 8 bit array accessed as big-endian.

big bit[8] byte;

little byte[4] word;

little word[1024] memory;

Converting from one endianness to another without altering the bit
pattern is possible through straight assignment from a variable with one
endianness to one with the opposite endianness. The resulting array,
when viewed from the original endianness, will appear to have a different
abstract value.

Sign, CISL admits two kinds of sign modifiers: signed and
unsigned. The purpose of these modifiers is to determine how sign-sensi-
tive operators should interpret the abstract value of a bit pattern. Sign mod-
ifiers also may have effects such as sign extension if a bit array of smaller
size is coerced into one of a larger size.

3.2.3. Subranges

Subranges allow one to refer to sub-portions of a type. Subranges
are to types as references are to bit arrays. Subranges are also analogous
to union types in C, where the same space can be interpreted according
to different representations. Here is an example of a type declaration fol-
lowed by a subrange declaration based upon that type:

type uint = bit[32];

subrange fb = bit[1l] @ uint[0];

The subrange declaration specifies the size of the new type in bits as given
by bit [1], and the start location of the subrange within its containing type
(given by uint[0]).

Subranges can subsequently be used in references in the same manner

as C unions. For example:

uint rl;
rl.fb =1;



238 Moss et al.

Here, a variable rl1 of type wuint is declared, and the bit corresponding to
subrange fb is set to 1.

Subranges of subranges are allowed, but recursive subranges are for-
bidden. It is also possible to have a subrange with different type modifiers
from the type that is being subranged. Here is an example based upon the
IEEE 32-bit Floating Point format:

type ieee32FP = big unsigned bit [32];
subrange sign = bit [1] @ 1eee32FP [0];
subrange exp = bit [8] @ 1ieee32FP [1];
subrange mant = little bit [23] @ ieee32FP[9];

In this example, the mantissa portion of the ieee32FP type is little-endian
even though the encapsulating type is big-endian.

3.3. Operators

CISL provides several primitive operators that perform operations on
bits and bit arrays. Arithmetic operators return a bit pattern that rep-
resents the result of the abstract operation. Boolean operators return a
bit representing the truth value of the operation—1 for “true” and 0 for
“false”. A detailed’ account of the operators appears in the CISL manual.

3.4. Classes

CISL also contains facilities for using classes. Classes are used in
much the same manner as conventional object oriented languages such as
Java, but there are several restrictions on them unique to CISL:

o Classes can contain both data and method-like declarations (see
Section 3.4.1)

o There are no interface types, such as in Java,

o The inclusion of a class within another class definition imposes a
special restriction. In a general object-oriented language, if the defi-
nition of class A includes another class B, the member present once
the object of type A is instantiated can have a class of type B or
any sub-class of B. However, CISL requires static knowledge of the
sizes of every bit array within a type. A situation like that above
involving a subclass of unknown size makes this determination diffi-
cult if not impossible. Since the containment of one class within
another is such a useful construct, the inclusion is allowed with
the condition that if a member of one class is another class, the



CISL: A Class-based Machine Description Language 239

included member may only be of the included class, not from one
if its descendants. The net result of this restriction is that the size
and composition of CISL classes are uniquely determined at com-
pile time—there are no references or pointers to other classes. The
need to know all sizes at compile time is also the reason why recur-
sive subranges are not allowed.

« Single inheritance is allowed, as are functions as in conventional
object-oriented languages.

3.4.1. Attributes

Attributes in CISL are rough analogues to class methods in other
object-oriented languages. They are meant to convey properties of a class
rather than explicitly executable code. For example, say there exists a class
inst_add that represents an add instruction in a particular ISA. The machine
description we are constructing will be used to generate a simulator and a
disassembler. Therefore, we need two attributes to fulfill the needs of these
tools: an effect attribute that represents the semantics of the add instruc-
tion, and an asm attribute that represents the textual representation of the
instruction. Here is an example of a class with these attributes:

class inst.add

{
big unsigned bit [6] ra;
big unsigned bit [6] rb;
big unsigned bit[6] rd;

effect () {
addi ()

}

asm(ra, rb, rd) {
“addi”

}
}

The effect attribute contains a call to a mixin, which is a seman-
tic building block (analogous to a function) described later in this sec-
tion. Note that the addi mixin takes no parameters; the definition is given
below. The asm attribute returns a format string corresponding to the
assembler mnemonic of the instruction. The names and format of these
two attributes arise from the manner in which the CoGenT tool set will
interpret and use them to produce the simulator and assembler. This is
further detailed in Section 4.



240 Moss et al.

3.4.2. Constraints

CISL also allows constraints on the value of class members. Constraints
represent restrictions on the values of class members. They are useful for rep-
resenting common semantic actions such as instruction parsing (decoding)
and emitting (encoding). For decoding, a constraint validates the identity
of the containing class based upon the given constraints on its members
(i.e., checking for equality). For emitting, a constraint dictates the values of
member fields that must be emitted (i.e., assignment to an output value).
This duality of semantics allows the machine description writer to express
one of the primary actions of encoding and decoding within a single concise
syntax. Note that equality is currently the only constraint that is supported.
Here is an example of a class that contains an unsigned bit array, the first
two bits of which are each constrained to be 1:

class A

{

big unsigned bit [8] byte;
big unsigned bit [2] hiBits @ byte [7];
hiBits = 0x3;

}

3.4.3. Mixins

As mentioned previously, mixins are semantic building blocks that
may be used to implement functionality within attributes. Semantic func-
tionality, i.e., functionality that operates on patterns as opposed to describ-
ing them, is very important when attempting to generate tools such as
simulators from a machine description. In that case, the semantics of each
instruction in a particular ISA would be built up from mixins.

A mixin in CISL is a namespace that contains only methods, which are
closer in spirit to methods in the traditional sense (functions). These meth-
ods may contain free variables that refer to another class or mixin, with
the condition that the CISL compiler must be able to resolve all of the free
variables at compile time within the scope of the class that calls the methods
of the mixin. At that point, a fully specified method is achieved, and can
be used to operate on patterns. Using mixins in this manner is useful for
any kind of ISA, but it is especially useful for instruction sets that possess
different instructions that utilize common semantic elements such as regis-
ter access or a specific form of addressing. In our model, a mixin may be
set up for each addressing mode and each type of register access, and the
machine description writer will not have to specify an implementation of
each of these semantic elements in each instruction that needs them. The



CISL: A Class-based Machine Description Language 241

writer only has to use the mixin, and CISL will “mix” the mixins correctly
to obtain the proper implementation.

Here is a simple example of a mixin named arith,

mixin arith requires(ra, rb, rd)

{
}

This mixin introduces the keyword requires, which requires that the three
variables ra, rb, and rc be defined in the scope of the class using the mixin. The
name of the mixin, arith, defines a form of namespace, so that mixins with iden-
tical signatures but different method implementations can be used. The body
of the mixin defines the method addi, which adds the contents of two registers
and stores them in a third. The meaning of gp is actually part of what is known
as the machine state description. This will be explained further in Section 4, but
suffice it to say that it represents the register file. In Section 3.4.1 concerning
attributes, we described a class that uses the method addi, but that class was
not complete because the source of the method was not specified. Here is the
complete definition of that class:

class inst.add uses arith

{

addi () { gplrd] =gplral + gp [rb] }

big unsigned bit[6] ra;
big unsigned bit[6] rb;
big unsigned bit[6] rd;
effect () {

addi ()

}
o

This class now specifies the source of the addi method as the mixin arith.
The class also defines the three register identifiers required by the mixin, so the
method is fully specified at compile time. It is also possible to pass these iden-
tifiers into the specification of the mixin in the inst_add definition as follows:
class inst.add uses arith (ra=rx, rb=ry, rd=rz)
{
big unsigned bit[6] rx;
big unsigned bit[6] ry;
big unsigned bit[6] rz;
effect () {
addi ()

}



242 Moss et al.
o CoGenT IR Jikes-Specific
. Qiefgﬁfmnﬂfl . FEront End Tools (Fully Specified) Back End Tools Tools

Machine ¥ - 3
i (|
£
ISA = \ ISA
Descipion 4 & § . | - \
Pipeline
Description
- Simulator
Generator

(] " " 1}
A Pipeline
i e i Jr

-

BURS
Generator
Assembler
Generator

CoGenTAsm-»
JikesAsembler

CoGenT

-.ﬁnmm:mg

Fig. 1. Architecture of the GoGenT system.

This example simply assigns an alias to variables defined in the class
so they may be resolved by the mixin. It should be noted that CISL
also has a macro facility that operates like a syntactic mixin. Macros
can be applied to classes to create derived classes with new members and
constraints. Time and space constraints prohibit a detailed discussion of
macros. Interested readers should consult the language manual.(!?

In sum, mixins are semantic building blocks that can be used to build
up class attributes. They enable the machine description writer to adjust
the granularity of the needed semantic pieces to the most convenient level
of detail, and provide an automatic means of integrating them correctly.
This way, instead of representing the Cartesian product of the semantic
elements, one can simply represent each element and the necessary com-
binations.

4. CISL AND THE COGENT PROJECT FRAMEWORK

Having laid out in detail CISL we now describe more concretely
the system within which this language will exist (illustrated in Fig. 1).
The figure shows the flow of CISL descriptions through the CoGenT
system. The descriptions of various aspects of a machine (instruction
syntax/semantics, pipeline, etc.) written in CISL begin at the far left of the
figure. These descriptions will be processed by front-end tools and com-
piled into an intermediate representation. This intermediate representation



CISL: A Class-based Machine Description Language 243

will then be used by back-end tools to generate components to be plugged
into the back-ends of compilers and simulators.

Although this paper has focused on the descriptions of instruction
set architectures we envision an entire collection of descriptions covering
all aspects of a machine, such as architecture pipelines, machine storage
locations, calling conventions, and others. These descriptions will have the
same flavor as CISL so it is not only easier for the user who must learn
the language but also will provide for easier construction of tools that will
process those descriptions.

Front-end tools are responsible for parsing the set of machine descrip-
tions as well as performing semantic and type analysis to ensure language
correctness. It may be the case that a particular description may reference
elements that have been defined in other descriptions. It might also be the
case that some description may want to refer to entities defined in several
different descriptions depending on the particular machine we are working
with. For example, we might want the semantics of instructions defined for
architecture A to use the definition of the store for machine A during a
particular component generation phase and use a different version of that
machine store, say A.2, during another generation phase. To provide for
such flexibility in machine description composition a manager, as shown
in the figure, resides between the machine descriptions and the front-end
tools.

By separating the composition of machine descriptions from the
front-end tools we maintain a simple and clean interface between the
description languages themselves and the tools that process them. This
in turn allows us to create more front-end tools quickly and easily. It is
important to recognize in a system such as CoGenT that the ability to mix
and match architecture specifications provides for a more flexible environ-
ment for exploration and experimentation is just as important as the flex-
ibility of the language in which those specifications are written.

The front-end tools are responsible for resolving all references to vari-
ables and types that are defined in the machines descriptions. Once this is
accomplished, the front-end tools emit an intermediate representation that
is fully resolved according to the input descriptions. This intermediate rep-
resentation is intended to be in a simple form that allows back-end tools
to process it easily and efficiently. Because the complexities of program
analysis have been accomplished already by the front-end tools, it allows
the back-end tools to focus on the particular components they must gen-
erate. This “compiled” form also represents an instance of an architecture
produced by the machine descriptions. It may be the case that we wish to
produce several different instances that have small variations in order to
explore new architectural ideas.



244 Moss et al.

The back-end tools transform the intermediate representation orig-
inating from the machine descriptions into components that are to be
“plugged in” to existing system tools and frameworks. A sample of an
existing compiler framework for which we intend to generate compiler
back-end components is the Jikes RVM Java virtual machine. We have
considerable experience using and modifying the Jikes RVM, which devel-
oped at IBM Research. It is now available as an open source system, with
many academic research groups using it for work in compilation. Jikes
RVM includes both a baseline compiler (which provides very little optimi-
zation) and an optimizing compiler. The baseline compiler compiles Java
bytecodes directly into the target machine code, whereas the optimizing
compiler has several layers of intermediate representations.

To generate compiler components for the Jikes RVM optimizing com-
piler we will include a machine description for the IR used in the Jikes
RVM as well as for the target architecture. Using the bounded heuristic
search technique described by Cattell® in the CoGenT back-end tool we
will be able to match the semantics of the Jikes RVM IR to the semantics
of the target architecture, and to generate BURS rules!¥ that map the IR
to the target architecture. While the optimizing compiler is designed to be
retargetable using BURS rules, the baseline compiler is not designed in a
retargetable way. We need to determine how to generate an efficient base-
line compiler from semantic descriptions of the Java bytecodes (the “IR”
in this case) and the target ISA.

Similarly, we will have back-end tools that will generate components
that will plug in to a simulation framework we will develop from scratch.
We will base it on existing systems, such as SimpleScalar,!> but the auto-
matic retargeting that is the essence of our approach means that many
pieces will be new. We view a simulator as consisting of many kinds of
components. Of these, the ones we propose to generate automatically from
ISA and timing descriptions in the back-end tools are instruction seman-
tics and instruction timing. We assume that the remaining semantics and
timing components present suitable interfaces to call, and to be called by,
the generated instruction-related components. We plan to offer a mod-
est range of options in the simulator framework of semantics and timing
components, such as branch predictors, caches, and memory organizations.
There will also be a particular emphasis on instrumentation in the simu-
lator frame-work.

5. FUTURE WORK

In the immediate future we will have the CISL implementation com-
plete and well tested. This includes not only the parser but a full set of



CISL: A Class-based Machine Description Language 245

front-end tools and a fully specified intermediate representation. In the
longer term our intentions are extensions of CISL for describing archi-
tectural details, and to design and implement a simulator framework. A
major portion of this framework will consist of a collection of retarget-
able support components (cache models, linkers, loaders, language run-
time system, OS interface, etc.). Concurrently, we will be constructing the
necessary back-end for consuming our intermediate representation and
generating correct and reasonably efficient versions of all target-dependent
simulator components. Following the completion of our front-end tools,
further CoGenT development will occur on two parallel tracks. One track
is concerned with constructing the simulator framework and component
generators described previously. The second will progress towards auto-
matic code generator generation from machine descriptions, building on
the work of Cattell.®)

6. CONCLUSIONS

CISL, although inspired by previous efforts, was designed from
scratch and is different from other machine description languages in
several no-table ways. First, CISL’s Java/C like syntax was designed to
be sufficiently generic to be useful across multiple sub-domains of the
machine-description space. Second, CISL employs a restricted form of
object-orientation to aid the description of instructions and machines.
Class inheritance provides a convenient way step-wise to define instruc-
tion groups (particularly in orthogonal instruction sets). Also, inheritance
allows shared features to be defined in parent classes, and thus partial
descriptions are easy. Third, CISL is a strongly typed language whose fun-
damental types are bits and arrays of bits. This single feature alone allows
us to describe any binary machine. In addition, the ability of users to
define their own types allows the CISL programmer to define complex
machine structures both easily and cleanly. Because of these features we
believe that CISL is an excellent language for accomplishing the varied
and distinct goals of the CoGenT project.

ACKNOWLEDGMENTS

This material is based up on work supported by the Nation Science
Foundation under grants ACI-0203895, CCR-0085792, and CCR-0310988.
Any opinions, findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views
of the NSF.



24

6 Moss et al.

REFERENCES

10.

11.

12.

13.

14.

. C. W. Milner, Pipeline Descriptions for Retargetable Compilers: A Decoupled Approach,
Technical Report CS-99-11, University of Virginia (June 1998).

. E. C. Schnarr, Applying Programming Language Implementation Techniques to Processor
Simulation, Ph.D. dissertation., Computer Sciences, University of Wisconsin-Madison
(2000).

. R. G. G. Cattell, Automatic Derivation of Code Generators from Machine Descrip-
tions, ACM Trans. Program. Lang. syst. 2(2):173-190 (April 1980).

. S. R. of Machine Instructions, Norman Ramsey and Mary F. Fernandez, ACM Trans.
Program. Lang. Syst. 19(3):492-524 (May 1997).

. N. Ramsey and J. W. Davidson, Machine Descriptions to Build Tools for Embedded
Systems, ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded
Systems (LCTES ‘98), pp. 172-188 (June 1998), available as Springer Verlag LNCS
1474.

. A. Fauth, J. V. Praet, and M. Freericks, Describing instruction set processors using
nML, in Proc. of the 1995 European conference on Design and Test, p. 503, IEEE
Comput. Soc. (19995).

. S. Onder and R. Gupta, Automatic Generation of Microarchitecture Simulators, /EEE
Inter. Conference on Computer Languages, ICCL, Chicago, IL (May 1998).

. A. Halambi and R Grim, EXPRESSION: A Language for Architecture Exploration
Through Compiler/Simulator Retargetability, in Proc. of the European Conference on
Design, Automation and Test, DATE (March 1999).

. E. Schnarr, M. D. Hill, and J. R. Larus, Facile: A Language and Compiler for High-

Performance Processor Simulators, ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, ACM (2001).

L. George and A. Leung, MLRISC: A Framework for Retargetable and Optimizing

Compiler Back Ends. Availble at http://csl.cs.nyu.edu/leunga/www/MLRISC/Doc/html/.

R. Lipsett, C. F. Schaefer, and C. Ussery, VHDL: Hardware Description and Design,

Kluwer Academic Publishers (1989).

D. Thomas and R Moorby, The Verilog Hardware Description Language, Kluwer Aca-

demic Publishers (1995).

T. Palmer, T. Richards, and E. Walters, CoGenT Langauge Manual, Availble at

http://www.ali-cs.umass.edu/cogent.

C. W. Fraser, D. R. Hanson, and T. A. Proebsting, Engineering a Simple, Efficient

Code Generator Generator, ACM Lett. Program. Lang Syst. 1 (3):213-226 (Septem-

ber 1992).

. D. C. Burger and T. M. Austin, The SimpleScalar Tool Set, Version 2.0, Comput.
Architecture News, 25(3):13-25 (June 1997), extended version available as Univ. Wisc.
Comp, Sci. Tech. Rep. 1342 (June 1997).



